
:

HyperChem® for Windows and NT

The Chemist’s Developer Kit (CDK)

Customizing HyperChem

Interfacing to HyperChem
Publication HC50-00-04-00 October 1996

Hypercube, Inc.

blication,

auss,
Copyright © 1996 Hypercube, Inc.

All rights reserved

The contents of this manual and the associated software are the property of Hypercube, Inc. and are copyrighted. This pu
or parts thereof, may not be reproduced in any form, by any method, for any purpose.

HYPERCUBE, INC. PROVIDES MATERIALS “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OR CONDITIONS
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL HYPERCUBE,
INC. BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS, EVEN IF
HYPERCUBE, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY
DEFECT OR ERROR IN THESE MATERIALS. THE SOLE AND EXCLUSIVE LIABILITY TO HYPERCUBE, INC.,
REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THE MATERIALS
DESCRIBED HEREIN.

Hypercube, Inc. reserves the right to revise and improve its products as it sees fit.

Hypercube Trademarks

HyperChem is a registered trademark of Hypercube, Inc. HyperMM+, HyperNewton, HyperEHT, HyperNDO, HyperG
HyperChemOS, HyperNMR and ChemPlus are trademarks of Hypercube, Inc.

Third Party Trademarks

Microsoft, MS-DOS, and Excel are registered trademarks, and Windows is a trademark of Microsoft Corporation.
IBM is a registered trademark of International Business Machines, Inc.

All other brand and product names are trademarks or registered trademarks of their respective holders.
PRINTED IN CANADA

 . 1
. 1
. 1
 . 2
 . 2
 . 2
 . 3
 . 3
 . 4
 . 5
. 6
 6
 . 6
 . 6
 . 7
 . 7
 8
 . 8

 . 11
 . 11
 . 13
 . 13
 . 15
 . 15
 . 16
 . 17
 . 17
Table of Contents

Chapter 1 Introduction 1
The Chemist’s Developer Kit

CDK for Windows or NT
Equivalent Unix CDK

Components of the CDK
Components Included with Release 5
Other Suggested Tools.
Suggested Compilers

HyperChem State Variables
Customizing HyperChem

Internal Script commands
HyperChem Command Language (Hcl)
Tool Command Language (Tcl/Tk)

Custom Menus
Interfacing to HyperChem

Dynamic Data Exchange
External Script Messages
The HyperChem Application Programming Interface (HAPI)

Overview of Chapters .

Chapter 2 Architecture of HyperChem 11
Introduction .
The Front End - Back End Architecture
The Older Master - Slave Architecture
The Open Architecture

UMSG and VMSG
IMSG and OMSG

The Newer Client - Server Architecture
The Network Architecture

Network DDE
i

 17
 . 18
 18

 . 21
. 21
 . 22
 . 22
 . 22
 . 24

 . 27
 27
 27
 28
 28
 29
 29
 29
30
 30
. 31
. 31
 32
 33
. 33
. 35
. 35

 . 37
 . 37
 . 38
 . 43
 . 47
UNIX .
Remote Back Ends
Mixing UNIX and Windows or NT

Chapter 3 Customizing HyperChem 21
Introduction .
A Flexible Development Platform
What are Scripts? .
Type 1 (Hcl) Scripts .
Type 2 (Tcl/Tk) Scripts
Custom Menus .

Chapter 4 HyperChem State Variables 27
Introduction .

Registering of HSV’s.
An Example of an HSV
Read/Write Nature of HSV’s
Using HSV’s .

Writing
Reading
Notifications
Atom Numbering for HSV’s
Argument Types for HSV’s

Kinds of HSV’s.
Scalar HSV’s
Vector HSV’s
Array HSV’s .

A Finite State Machine View of HyperChem
An HSV Server View of HyperChem

 .

Chapter 5 Custom Menus 37
Introduction .
Script Menu Items .
Menu Files .
Simple Example .
Further Customization
ii

 . 49
 . 49
. 49
. 50
. 50
 . 52
 . 53
 . 54
 . 54
 . 54
 . 54
. 55
. 55
 56
 . 56
. 57
 58
 . 58
 59
. 59
. 60
. 64
. 65
 . 66
. 66
 . 66

 . 93
 . 94
 . 94
 . 94
 . 95
 . 95
 . 95
. 95
 . 96
. 96
 . 97
 . 97
Chapter 6 Type 1 (Hcl) Scripts 49
Introduction .

Hcl Script Commands
HSV’s
Menu Activations
Direct Commands

Script Files .
CHEM.SCR .
Compiled Scripts
Recursive Scripts
Script Editor

Examples . .
Reactive Collision of Two Molecules

Assign Target Position
Assign Collision Velocities
Wave Function Computation Parameters
The Collision
Building and Optimizing C60
Setup
Drawing the First Pair of Atoms
Finish First Level Pentagon
Build Remaining Layers
Color Bottom and Rotate
Zoom Structure
Create an SO2 Molecule Inside C60
Optimize SO2 inside Cavity

Catalog of HSV’s and Direct Script Commands

Chapter 7 Type 2 (Tcl/Tk) Scripts 93
Introduction .
Elements of Tcl . .

Books .
Internet .
What is Tcl? .

Commands and Arguments
Variables and Values
Command Substitution
Procedures and Control Structures
Tk .

Hcl Embedding .
hcExec. .
Table of Contents iii

. 97
 . 98
 98
 100
 101
 102

 . 105
 105
105
 . 106
. 106
07
07

107
07

. 107
 . 108
. 111
111
 112
 112
 112
113
. 113
 . 114
 115

 . 117
117
17

 . 118
. 118
. 119
 120
 121
 . 121
. 121
hcQuery .
Examples. .

Calculating the Number of Atoms.
Calculating a Dipole Moment

Labels
Button

Chapter 8 DDE Interface to HyperChem 105
Introduction .

DDE versus HAPI.
Use of DDE in Windows Applications

Basic Properties of DDE
DDE Message Types

DDE_INITIATE 1
DDE_ EXECUTE 1
DDE_ REQUEST
DDE_ ADVISE 1

DDE Interface to Microsoft Word
Red and Green Example
Extended Example

ActivateHC
ConnectHC:
ExecuteCmd
GetData
DisconnectHC.

DDE Interface to Microsoft Excel
Red (and Green)
Additional Macros

Chapter 9 DDE and Visual Basic 117
Introduction .

VB for GUIs or Computation
VB with DDE or HAPI Calls 1

Red and Green . .
Basic Form and Controls
Start Up (Load)
A Cold Link Request
A Hot Link . .
Execute .
Unload .
iv Table of Contents

 122

 125
 125
 126
 127
 128
 128
 128
 128
 128
128
129
129
29
129
129
129
130
 130

 135
 136
 136
 137
 138
38
38
38
38

 138
 138
38

138
 138
 139
9

9

A HAPI Interface to VB

Chapter 10 External Tcl/Tk Interface 125
Introduction .
Why External? .
Invoking External Tcl/Tk
The THAPI package .

Commands .
hcConnect <instance>.
hcDisconnect
hcExec hcl_script_command
hcQuery hsv
hcCopy source_file desination_file
hcNotifyStart hsv
hcNotifyStop hsv
hcGetNotifyData notification_data. 1
hcSetTimeouts exec_timeout query_timeout rest_timeout . .
hcLastError error_text
hcSetErrorAction action_flag
hcGetErrorAction

A Notification Example

Chapter 11 The HAPI Interface to HyperChem 135
Introduction .
Towards a Chemical Operating System.
The Components . .
The HAPI Calls . .

Initialization and Termination
BOOL hcInitAPI (void) 1
BOOL hcConnect (LPSTR lszCmd) 1
BOOL hcDisconnect (void) 1
void hcExit(void) 1
Discussion

Text-based Basic Communication Calls
BOOL hcExecTxt (LPSTR script_cmd) 1
LPSTR hcQueryTxt (LPSTR var_name)
Discussion

Binary-based Basic Communication Calls
BOOL hcExecBin (int cmd, LPV args, DWORD args_length) . 13
LPV hcQueryBin(int hsv, int indx1, int indx2, int* length) . . 13
Table of Contents v

 139
139
. 140
140
0
0
40
0
 141
. 141
141
41
1
41

141

41

41
 142
. 142
42

142

42
 142
. 142
42
2
2
43

43
 143
 . 143
143
43
43
43

143
Discussion
Binary Format

Binary-based Get Integer Calls.
int hcGetInt (int hsv).
int hcGetIntVec(int hsv, int* buff, int max_length) 14
int hcGetIntArr (int hsv, int* buff, int max_length) 14
int hcGetIntVecElm (int hsv, int index) 1
int hcGetIntArrElm (int hsv, int atom_index, int mol_index) . . 14
Discussion

Binary-based Get Real Calls
double hcGetReal (int hsv)
int hcGetRealVec(int hsv, double* buff, int max_length) . . . 1
int hcGetRealArr (int hsv, double* buff, int max_length) . . . 14
double hcGetRealVecElm (int hsv, int index) 1
double hcGetRealArrElm (int hsv, int atom_index,
 int mol_index)
int hcGetRealVecXYZ (int hsv, index, double* x,
 double* y, double* z) 1
int hcGetRealArrXYZ (int hsv, int atom_index, int mol_index,

double* x, double* y, double* z) 1
Discussion

Binary-based Get String Calls
int hcGetStr (int hsv, char* buff, int max_length). 1
int hcGetStrVecElm (int hsv, int index, char* buff,
 int max_length)
int hcGetStrArrElm (int hsv, int atom_index, int mol_index, char*

buff, int max_length) 1
Discussion

Binary-based Set Integer Calls
int hcSetInt (int hsv, int value) 1
int hcSetIntVec(int hsv, int* buff, int length) 14
int hcSetIntArr (int hsv, int* buff, int max_length) 14
int hcSetIntVecElm (int hsv, int index, int value) 1
int hcSetIntArrElm (int hsv, int atom_index,
 int mol_index, int value) 1
Discussion

Binary-based Set Real Calls
int hcSetReal (int hsv, double value)
int hcSetRealVec(int hsv, double* buff, int length) 1
int hcSetRealArr (int hsv, double* buff, int length) 1
int hcSetRealVecElm (int hsv, int index, double value) 1
int hcSetRealArrElm (int hsv, int atom_index, int mol_index, double

value)
vi Table of Contents

 143
e
144
 144
 144
144
44

144
 144
 144
4

45
 145
 145
45
45

5
45
5

 145
 145
45

146
 146
 146
 146

146
46
46
46

 146
46
 147
 148
48
49
 150
 152
153
 153
int hcSetRealVecXYZ (int hsv, index, double x,
 double y, double z)
int hcSetRealArrXYZ (int hsv, int atom_index, int mol_index, doubl

x, double y, double z)
Discussion

Binary-based Set String Calls
int hcSetStr (int hsv, char* string)
int hcSetStrVecElm (int hsv, int index, char* string) 1
int hcSetArrElm (int hsv, int atom_index, int mol_index, char*

string)
Discussion

Get and Set Blocks
int hcGetBlock (int hsv, char* buff, int max_length) 14
int hcSetBlock (unt hsv, char* buff, int length) 1
Discussion

Notification Calls
int hcNotifyStart (LPSTR hsv) 1
int hcNotifyStop (LPSTR hsv) 1
int hcNotifySetup (PFNB pCallBack, int NotifyWithText) . . 14
int hcNotifyDataAvail (void) 1
int hcGetNotifyData (char* hsv, char* buff, int max_length) . 14
Discussion

Memory Allocation.
void * hcAlloc (size_t, n_bytes) 1
hcFree (void* pointer)
Discussion

Auxiliary Calls
void hcShowMessage (LPSTR message)
void hcSetTimeouts (int ExecTimeout, int QueryTimeout, int

OtherTimeout)
int hcLastError (char* LastErr) 1
int hcGetErrorAction (void) 1
void hcSetErrorAction (int err) 1
Discussion

The HAPI Dynamic Link Library (HAPI.DLL) 1
How to use the HyperChem API

Accessing the HyperChem API from C/C++ code
Run-Time Dynamic Linking. 1
Load-Time Dynamic Linking 1

Accessing the HyperChem API from Fortran code
Accessing the HyperChem API from Visual Basic Code
Accessing the HyperChem API from Tcl/Tk code
Considerations for Console-based Applications
Table of Contents vii

 154
 . 155
. 155
 155
 155
. 155
 155
 156
. 156
 156
 156

 . 157
 157
. 157
 . 158
 . 158
. 163

 . 171
 171
. 171
 . 172
 . 172
 174
. 178
179
 . 180

 . 185
. 185
. 186
. 187
 . 187
 . 189
. 190
The Notification Agent
Examples of HAPI Calls

C, C++ .
Text-based
Binary-based

Fortran .
Text-based
Binary-based

Visual Basic
Text-based
Binary-based

Chapter 12 Development Using the Windows API 157
Introduction .

Microsoft Development Tools
Programming Assistance
Language .

A First Example .
Modification of a Molecule’s Coordinates

Chapter 13 Development Using the MFC 171
Introduction .

Microsoft Development Tools
Programming Assistance
Language .

A First Example .
Modifications
Included Files
Dynamic Link Library and Connecting to HyperChem

Cavity. .

Chapter 14 Console C and Fortran Applications 185
Introduction .

Console Applications.
C or Fortran.
The Integrated Development Environment

C Program .
Fortran Programs .

Reflect .
viii Table of Contents

 193
193
94
196
197
200
200
202
 202

. 203
 204
 204
 205
 205
205
 205
 205
 206
206
 206
 206
 206
 206
 207
 207
207
 207
 207
 207
 208
208
 208
208
208
 209
 209
 209
 209
210
 210
MiniGauss Orbitals
Outline
A New GUI Element 1
The Main Program.
Get Molecule
Wave function Calculation
Displaying Orbitals and

Diffusion Limited Aggregation
Further Examples .

Appendix A Classification of Hcl Commands 203
The Classes .

General Operations
Single Point
Solvation
Customization
Printing
Other

Cursors .
Mouse Mode
Clipping
Rotation
Translation
Zoom

Selections. .
Select Options
Select
Ask About Selection
Operate on Selection
Named Selections
Other

File Operations
Molecule File
Options
PDB File
Import/Export
Other

Scripts . .
Script Files
Execution
Notifications
OMSGs
Table of Contents ix

 210
 210
 210
. 211
. 211
. 212
 212
 212
 212
 212
 212
 213
 213
213
 213
 213
 213
213
 214
. 214
 214
214
215
 215

 215
 215
 . 216
 216
 216
216
 216
 217
. 217
. 217
 217
 218
 218
. 218
18
 218
 218
. 219
 219
Menus
Stack Operation
Other

Info .
Errors .
Logging .
Auxiliary .

Declarations
Warnings
Screen Output
Version
Other

Viewing . .
Alignment
Redisplay
Rotation.
Translation
Window.
Other

Rendering .
General Options
Specific Rendering Options
Show - Don’t Show

Coloring and Labeling
Color
Labels

Images .
Model Building

Options
Drawing
Constraints
Other

Stereochemistry
Atom Properties

Labels
Coordinates and Velocities
Other

Molecule Properties
Charge-Multiplicity 2
Counts
Properties

Back Ends .
Basic
x Table of Contents

219
 219
 219
 219
 220
220
 220
 220
220
221
221
 221
 222
 222
 222
223
 223
223
 223
 224
 224
 224
 224
 224
 225
 225
 225
225
 226
226
 226
 226
 226
 227
 227
227
 227
 227
 228
 228
 228
 229
 229
Large Communication Structures
Remote Back Ends.

Molecular Mechanics Calculations
Method
Energy Components
Cutoffs
Scale Factors
Parameters

Amino Acids and Nucleic Acids
Amino Acids
Nucleic Acids
General Residue

Molecular Dynamics and Monte Carlo.
Basic
Run Parameters.
Averaging
Playback
Monte Carlo Specific

Optimization .
Basic
Restraints

General Quantum Mechanics.
Input Parameters
Output Results

Semi-empirical Calculations
General
Huckel
ZINDO

Ab Initio Calculations
Input Options
Basis Set
2-electron Integrals
Results

Configuration Interaction
Infrared Spectra

Animations
Spectra

UV Spectra .
Plotting .

General Options
2D .
3D .
Grid
Table of Contents xi

 . 231

 . 237
237
 241
 244
 244
47
64
 280
286
 288

 295
Appendix B Listing of Tcl Commands 231
The Tcl Commands .

Appendix C Classification of HAPI Calls 237
The API functions .

Functions for Initialization and Termination
Functions for Text-based Communication
Functions for Binary Communication

Binary Execute and Query
Functions for Binary ‘Get’ 2
Functions for Binary ‘Set’ 2

Functions for Processing Notifications
Functions For Memory Allocation
Auxiliary Functions

Index
xii Table of Contents

sso-
.

enu

r
in a
5

le
ix

em
-

Chapter 1

Introduction

The Chemist’s Developer Kit

The Chemist’s Developer Kit (CDK) allows you to:

• Customize HyperChem For Your Own Purposes

• Interface Your Own Programs to HyperChem

CDK for Windows or NT

This manual describes the Chemist’s Developer Kit (CDK) to be used in a
ciation with Release 5.0 or greater of HyperChem® for Windows and NT
The CDK allows you to customize HyperChem for your own special pur-
poses, by modifying its menus and introducing scripts that each custom m
item can invoke. Alternatively, you can use the CDK to interface HyperChem
to external programs written in Visual Basic, C, Fortran, etc. The CDK fo
Windows and NT, as described here, allows you to extend HyperChem
multitude of ways but always within the confines of Microsoft Windows 9
(or greater) or Windows NT 3.51 (or greater).

Equivalent Unix CDK

A similar but somewhat modified CDK and manual will be made availab
for Unix. That manual will describe how to, correspondingly, customize Un
versions of HyperChem and how to interface a UNIX version of HyperCh
to programs written for Unix. It will also describes how to interface a Win
dows or NT version of HyperChem to your Unix program.
1

Components of the CDK

 for
rec-
ram-
pa-

ore
fol-

E

ple,
ave

apid
Components of the CDK

The CDK is included as a part of the general Release 5.0 of HyperChem
Windows 95 and NT. Example scripts and programs are found in sub-di
tories on the HyperChem CD-ROM associated with the the relevant prog
ming environment - C, Fortran, etc. The current CDK has only limited ca
bility with older versions of HyperChem.

Components Included with Release 5

The CDK consists essentially consists of:

• A HyperChem Executable (Release 5.0 or greater)

• This Manual

• Example Custom Menu Files (*.MNU)

• Example Hcl Scripts (*.SCR)

• Example Tcl/Tk Scripts (*.TCL)

• The HyperChem Application Programming Interface Library (HC.H,
HCLOAD.C, HSV.H, HAPI.DLL and HAPI.LIB for C/C++
environments)

• Related HAPI Files for Other Languages

• Example Programs Interfaced to HyperChem

Other Suggested Tools

To customize HyperChem no other tools are required. However, to expl
interfacing HyperChem to other Windows programs, one or more of the
lowing may be useful:

• Microsoft Word

• Microsoft Excel

• Microsoft Visual Basic

These three have been used in this manual to illustrate the low-level DD
interfaces to HyperChem described in Chapters 8 and 9. Other Windows
word processors (for example, WordPerfect) or spreadsheets (for exam
Quattro Pro) could be used in place of Word and Excel but the authors h
little experience with them. Visual Basic is preferred by the authors as a r
2 Chapter 1

HyperChem State Variables

in,
ers.

ion

m,
have

ay

ple-

nstan-
ad-

gy

 has
e ini-
prototyping language for preparing a visual interface to HyperChem. Aga
other such visual tools are available from Borland and other manufactur

Visual Basic may also be used with the higher-level HyperChem Applicat
Programming Interface (HAPI) replacing the lower-level DDE interface.

Suggested Compilers

To explore compiled C, C++, or Fortran programs interfaced to HyperChe
appropriate compilers and development environments are required. We
used

• Microsoft Visual C++ 4.0

• Microsoft Fortran PowerStation 4.0

Equivalent compiler tools from other manufacturers, such as Watcom, m
be used but the examples of the CDK have only been tested with the
Microsoft tools.

HyperChem State Variables

The CDK and much of what follows are possible because HyperChem im
ments the concept of a state variable. A HyperChem State Variable (HSV) is
one of hundreds of variables and data structures that is registered at the i
tiation of HyperChem and is henceforth available for flexible and robust re
ing and writing at any later time. An example of an HSV is the total ener
of the system which is represented by the hyphenated string,

total-energy

At any time, even when the system still has no molecule or no calculation
yet been performed on the molecular system (and the total energy as th
Introduction 3

Customizing HyperChem

The

em
tialized value zero), the HSV, total-energy, is available for reading and writ-
ing, either within a HyperChem script or from an external program.

Customizing HyperChem

HyperChem has two quite unique features that allow you to customize it.
first of these is that it has its own set of script commands that can activate
essentially any of the program’s functionality. The second is that HyperCh
allows its whole menu structure to be replaced by custom menus.

total-energy 1.035

File
Reader

DDE
Message
Reader

FILEPROGRAM

1.035

total-energy

Hcl Interpreter

HyperChem
4 Chapter 1

Customizing HyperChem

at

via
ted
the

s

Internal Script commands

Script commands each consist of a single line of text, such as do-molecular-
dynamics and menu-file-open, that invoke HyperChem actions or read and
write HyperChem State Variables (HSV’s) via a Scripting Interface (SI) th
is a superset of the interactive Graphical User Interface (GUI) available
mouse and keyboard.Thus a molecular dynamics trajectory can be initia
by mouse clicks on the appropriate menu items and dialog boxes or by
above script commands. Alternatively, one can bring up the
<File/Open...>1dialog box by clicking on the appropriate menu item or by
executing the appropriate script command, menu-file-open. Script commands
can be of two types, Hcl or Tcl/Tk.

1. Here and throughout the text we will periodically use angular brackets to delimit menu item
(and other text) so as not to confuse it with surrounding text.

Execute Script
Introduction 5

Interfacing to HyperChem

ist of

 line
uch

cl
cl
,
w
-

cture
ch

xecu-

-
rd
ne
 new

am-
ing
HyperChem Command Language (Hcl)

Scripts can be written in the HyperChem Command Language (Hcl), pro-
nounced “hickle”, that has been part of HyperChem since its first public
release. These scripts, now referred to in Release 5.0 as Hcl scripts cons
a simple sequence of Hcl commands (strings), such as the do-molecular-
dynamics script command referred to above. Hcl scripts are stored in *.SCR

files that contain only straight line code consisting of a sequence of single
Hcl commands. Hcl scripts contain no Variables or Control Statements s
as IF, ELSE, DO, etc.

Tool Command Language (Tcl/Tk)

With Release 5.0, HyperChem can now execute a Tcl/Tk Script that consist
of Hcl script commands embedded inside a conventional Tcl/Tk script. A
Tcl/Tk script is one that is interpreted by the well known public domain T
command interpreter that is now part of HyperChem Release 5.0. The T
interpreter allows a rich control structure of variables, loops, conditionals
etc. It is augmented by a tool kit (Tk) that allows a Tcl script to define ne
graphical elements, such as dialog boxes, allowing you to extend Hyper
Chem’s GUI.

Custom Menus

HyperChem Release 5.0 allows a user to replace the standard menu stru
of the shipped product with a totally new and custom menu structure. Ea
custom menu item can have its own button text and can be tied to the e
tion of an arbitrary script file, either *.SCR or *.TCL. Since all the conven-
tional menu items of HyperChem Release 5.0 have equivalent script com
mands such as menu-file-open, the custom menus can replicate the standa
HyperChem product as well as define essentially any new product that o
likes. The custom menus allow a Tabula Rasa, or blank page, on which a
chemistry product can be written.

Interfacing to HyperChem

A principal component of the CDK is the documentation, libraries, and ex
ples that allow you to interface your own codes to HyperChem. Customiz
HyperChem, as implied above, means the internal execution of script com-
mands brought about by reading them from a simple text file (*.SCR or
*.TCL). Interfacing to HyperChem on the other hand, implies that an exter-
6 Chapter 1

Interfacing to HyperChem

end-

ing
ati-
om-
m’s

sages
-
cept
 and
hat
u-

 it

e
ile
hus a

ially

 like
nal program (your own) executes the equivalent of script commands by s
ing them as messages to a running copy of HyperChem.

That is, an external program can drive HyperChem from outside by send
it script messages. Interfacing to HyperChem does not imply that you st
cally link your code together with HyperChem code but rather that you c
pletely control HyperChem from outside and read and write to HyperChe
data structures via external messages.

Dynamic Data Exchange

With most computer operating systems, running programs can send mes
to one another. In the Unix environment these messages are often imple
mented with Pipes or Sockets and the Unix version of HyperChem can ac
messages sent by external programs in this fashion. Microsoft Windows
NT include a capability, referred to as Dynamic Data Exchange (DDE), t
is an equivalent capability allowing one Windows or NT program to comm
nicate with another by sending it DDE messages.

External Script Messages

In the Microsoft Windows or NT environment a program external to and
independent of HyperChem can drive or control HyperChem by sending
DDE messages. HyperChem responds to a complete set of script messages,
implemented via DDE, that are analogous and essentially identical to th
script commands discussed above. A script command is text placed in a f
while a script message is the corresponding text placed in a message. T
HyperChem molecular dynamics trajectory can be initiated by running a
script with the text do-molecular-dynamics in a *.scr or *.tcl file or by
sending a DDE message containing the same text.

These external DDE messages can be sent to HyperChem from essent
any well-designed Microsoft Windows or NT program. Thus, HyperChem
can be driven from a word processor like Microsoft Word, a spreadsheet

HyperChem
Your

Program

messages

messages
Introduction 7

Overview of Chapters

ro-

al
, an
alls
ich
e you
r-

-
rest

-

 to
tic-

ec-

k

d
on

res
tan-

ipts
er
Microsoft Excel, a simple Visual Basic program or a C, C++, or Fortran p
gram.

The HyperChem Application Programming Interface (HAPI)

The CDK includes a dynamic link library (HAPI.DLL) and a static library
(HAPI.LIB) that makes it particularly easy to interface your compiled Visu
Basic, C, C++, or Fortran program to HyperChem. Instead of using DDE
external program can just make HAPI calls to HyperChem. These HAPI c
are part of a higher-level interface that is included with the CDK and wh
abstracts away from operating system and machine dependencies to giv
a portable interface to HyperChem. Everything you can do with the lowe
level DDE interface you can accomplish with the HyperChem API.

Overview of Chapters

The CDK Manual contains the following chapters:

• Chapter 1, this “ Introduction,” discusses the general nature of the com
ponents of the Chemist’s Developer Kit and gives an overview of the
of the chapters.

• Chapter 2, “Architecture of HyperChem,” discusses the general architec
ture of HyperChem including its Front End - Back End Architecture, its
Network Architecture, its Client-Server Architecture, and its Open
Architecture. Each of these architectural aspects is important for the
richer understanding of HyperChem that is desirable in order for you
be able to easily customize it or interface your own code to it. Of par
ular importance for the CDK is an understanding of the Open Archit
ture of HyperChem.

• Chapter 3, “Customizing HyperChem,” describes script commands and
the execution of script files, either HyperChem Hcl script files or Tcl/T
Script files. Hcl script files contain simple sequences of script com-
mands. Tcl/Tk Script files contain normal Tcl/Tk code with embedde
Hcl script commands. This chapter, in addition, gives a full descripti
of the custom menu capability.

• Chapter 4, “HyperChem State Variables,” describes the concept of
HyperChem State Variables (HSV’s) in detail. The basic data structu
of HyperChem are HSV’s. These are registered by HyperChem at ins
tiation and are made available for reliable Reading and Writing by scr
and by external programs. This chapter provides background for lat
8 Chapter 1

Overview of Chapters

ion

nd
 the
fully

-line
con-
rol
sig-

ge
en-
cal
e

 by
g

es-
bse-

 the
like
 the

e to

ble

,

e
chapters which use HSV’s in scripts and in the HyperChem Applicat
Programming Interface (HAPI).

• Chapter 5, “ Custom Menus,” describes the concept of custom menus a
the syntax of a menu file. A menu file describes a set of menus and
scripts that are executed upon selecting a menu item. This chapter
defines the use of custom menus in HyperChem.

• Chapter 6, “Type 1 (Hcl Scripts),” describes the HyperChem Command
Language (Hcl) and scripts based upon it. These scripts are straight
scripts that access HyperChem data and functionality but include no
trol structures. Even without the superstructure provided by the cont
structures of other languages, however, Hcl scripts can accomplish
nificant tasks on their own.

• Chapter 7, “Type 2 (Tcl/Tk) Scripts,” describes a new feature of Hyper-
Chem, the inclusion of a very flexible and extensible scripting langua
referred to as the Tool Command Language (Tcl). It includes an ext
sion called the Toolkit (Tk) that can be used to build additional graphi
user interfaces for HyperChem. All Type 1 (Hcl) script commands ar
fully imbedded in the new Tcl/Tk interpreter.

• Chapter 8, “DDE Interface to HyperChem,” describes the low level DDE
interface to HyperChem that allows the direct control of HyperChem
programs like Word or Excel. A first example of HyperChem interfacin
is given by having these external programs execute simple script m
sages to affect the visual appearance of the HyperChem screen. Su
quent, more complicated examples, are also described.

• Chapter 9, “DDE and Visual basic,” describes how programs written in
Visual Basic can be interfaced to HyperChem via DDE. This extends
discussion of the last chapter to a more fully programmable system
Visual Basic. It contrasts with later Visual Basic applications that use
HAPI library.

• Chapter 10, “The External Tcl/Tk Interface,” describes an interface to
HyperChem where external forms of Tcl and Tk are used to interfac
HyperChem. Use of theTcl/Tk interpreter from outside HyperChem
allows for certain operations, such as notification, that are not possi
with the interpreter imbedded right into HyperChem.

• Chapter 11, “HAPI Interface to HyperChem,” describes a higher level
library for interfacing to HyperChem for use by Visual Basic, C, C++
and Fortran programs. This HyperChem Application Programming
Interface (HAPI) is described along with the calls that it contains. Th
Introduction 9

Overview of Chapters

he
tem

ws

 the

ut

bed.

ms

nds,
l.

er-
nu
CDK
 on
y
HAPI library is a fundamental component of the CDK. It is illustrated
with a Visual Basic example.

• Chapter 12, “Development Using the Windows API,” describes the devel-
opment of Windows and NT programs that interface to HyperChem. T
type of development presented in this chapter uses the Window’s Sys
Developer’s Kit (SDK) approach, along with HAPI calls. The SDK
approach is a detailed and more fundamental way to develop Windo
programs than the approach of the next chapter.

• Chapter 13, “Development Using the MFC,” describes the development
of Windows and NT programs that interface to HyperChem and use
Microsoft Foundation Classes (MFC). The MFC, in conjunction with
C++, enables one to build a Windows program much more quickly b
with somewhat less flexibility than with the SDK of the last chapter.
Development of interfaces to HyperChem using the MFC are descri

• Chapter 14, “Console C and Fortran Applications,” describes the inter-
face between Microsoft “console” applications (having no GUI) and
HyperChem. The emphasis here is on taking “legacy” Fortran progra
and having HyperChem provide a GUI for them.

• The three Appendices describe the complete set of Hcl script comma
the set of Tcl/Tk script commands, and the details of each HAPI cal

Finally, the HyperChem CD-ROM and the associated installation of Hyp
Chem 5.0 will provide you with a number of examples of the scripts, me
files, and applications either discussed or perhaps not discussed in this
manual. However, further material associated with the CDK will be found
Hypercube’s WWW site (http://www.hyper.com) and you should regularl
check that site for additional help.
10 Chapter 1

 of

 is
 cus-
 is

u in

g
pro-
 both
here

nts
green
d
Chapter 2

Architecture of HyperChem

Introduction

This chapter contains information on the following architectural features
HyperChem:

• The Front End - Back End Architecture

• The Master - Slave Architecture

• The Open Architecture

• The Client - Server Architecture

• The Network Architecture

The discussion here is given as general background on how HyperChem
constructed so that you are in a better position to appreciate how and why
tomization and interfacing become possible. The material of this chapter
not strictly required for what follows in later chapters but should assist yo
understanding the CDK.

Since HyperChem, like most large commercial products, has an evolvin
design and is certainly not the product of a single, totally rational, design
cess, what is presented here is somewhat of a combination snapshot of
the way it is and the way it is becoming. Nevertheless, what is described
represents Release 5.0 in most regards.

The Front End - Back End Architecture

HyperChem basically consists of one monolithic Front End and numerous
Back Ends. In the Windows and NT environment each of these compone
has its own icon and is a completely separate program. For example, the
beaker icon represents the HyperChem front end program. The falling re
11

The Front End - Back End Architecture

New-

ou,
es
 a

ew-
s

nd

divi-
d is

e
m
eld

ari-
that
end

apple icon represents one of the back end programs - in this case, Hyper
ton.

The front end is the program that your interact with. It accepts input from y
via the mouse and the keyboard, which constitute the GUI, and it provid
you with visualization services. For example, it may render a drawing of
molecule for you.

The back ends generally perform the compute intensive computations.
HyperChem Release 5.0 comes with 5 back ends - HyperMM+, HyperN
ton, HyperEHT, HyperNDO, and HyperGauss. In principal, the back end
compute only the energy of interaction of atoms and the first and second
derivatives of these energies. These energetic quantities feed the front e
which then computes chemically relevant properties. In practice, the sub
sion of labor between a back end program and the HyperChem front en
more complicated than this and depends on the situation.

One of the first things you might wish to consider as an application of th
CDK is to implement your own back end to replace one of the HyperChe
back ends. For example, you might like to have your own unique force fi
in replacement of the MM+, Amber, etc. force fields of HyperChem.

In the Windows or NT environment, the HyperChem front end and the v
ous back ends communicate via DDE although one might have thought
they would communicate through files. The HyperChem front end - back
DDE communication, however, is more of a live link than would be have been
possible via normal file reading and writing.

Front
 End

Back
 End

Back
 End

e.g. Molecular Mechanics

e.g. Quantum Mechanics

GUI

Visualization

DDE

DDE
12 Chapter 2

The Older Master - Slave Architecture

 is a
nd

front
ill

ith
o
s for
ont

 for

per-
 as
pped
ion-
has

ou,
ecture
pro-
ter-
The Older Master - Slave Architecture

The normal front end - back end relationship in HyperChem Release 5.0
master - slave relationship, i.e. the front end is the master over a back e
slave.

The back ends do not initiate anything and do only as they are told by the
end. If the front end requires the energy of a molecule, for example, it w
know whether a back end slave is idle, it will send the slave a molecule w
the instructions, “compute its energy,” and it will then wait for the slave t
return the result. The slave, when it is sent a molecule and the instruction
computing some energetic quantity, will do so, returning the result to the fr
end when it is finished. The slave will then return to an idle state waiting
further instructions.

The Master - Slave Architecture is considered an older architecture by Hy
cube. It is slowly being replaced by a newer Client - Server Architecture
described in the next section. However, the existing back ends being shi
by Hypercube as part of Release 5.0 all still use the master - slave relat
ship. The protocol between a master and a slave in HyperChem is, and
always been, an unpublished proprietary protocol. As such, knowing the
explicit details of the protocol is essentially irrelevant to the CDK and to y
the user. It is presented here so that you can understand the basic archit
of HyperChem. The newer client-server protocol described below is the
tocol used by the CDK and is the one that you should expect to use in in
facing to HyperChem.

The Open Architecture

HyperChem has an Open Architecture in that:

Front
End

Back
End

Master Slave

Calculate Something!

Here is a Result!
Architecture of HyperChem 13

The Open Architecture

use
hem
 you
cript
ram

as the
 the

a-
xam-
ed it

for
 and
ing
 The
• It can be driven by messages coming from other programs

• Other programs can read and write its internal data structures

The normal operation of HyperChem is via its GUI where you use the mo
and keyboard to operate HyperChem’s menus and dialog boxes. HyperC
attempts to allow an external program to operate it in the same way that
do sitting in front of the screen, except that the external program sends s
messages (rather than clicking on a key or a mouse button, which a prog
can’t do).

For example, an external program can access an internal variable, such
total energy, either for reading or writing, by sending a DDE message to
HyperChem front end.

Only front end variables are available to external programs and all inform
tion and state held solely by the back end is private to HyperChem. For e
ple, a back end program probably calculated the total energy but convey
to the front end where it resides in a front end data structure.

These front end variables that are made available to external programs
reading and writing are referred to as HyperChem State Variables (HSV)
are part of the front end state. The front end HSV’s are available for read
and writing at any time whether or not a back end has computed a value.
default value, in this case, is zero.

Front End Back End

total-energy

Proprietary DDE

Protocol

Open DDE Protocol

External
Program
14 Chapter 2

The Open Architecture

 of
ser

SG is
ppear

itted
ed

SG
man
sage
any
an

r

 real
t or a
UMSG and VMSG

Another way of looking at the open architecture of HyperChem is by way
its message interface. In the normal use of HyperChem, via the GUI, a u
provides input with mouse clicks and keyboard clicks. We refer to these
inputs as user messages. Each constitutes a UMSG. The result of a UM
that the internal state of HyperChem changes and a visual change may a
on the screen. We refer to these visual changes as HyperChem having em
a VMSG. While the user is not explicitly aware of having sent and receiv
these messages, HyperChem does indeed operate this way.

IMSG and OMSG

The open architecture implies that messages equivalent to a UMSG or VM
can be sent and received by external programs as well as interacting hu
users. For every UMSG there is expected to be an equivalent input mes
(IMSG). However, IMSGs are a superset of UMSGs because there are m
times a program will want to interface to HyperChem in a way that a hum
user would not. For example, a program may want to initiate a molecula
dynamics trajectory without bringing up a dialog box that a human must
respond OK to. The IMSG may or may not generate an output message
(OMSG) that augments the VMSG. These IMSGs and OMSGs constitute
data that are conveyed to HyperChem, usually as text strings, by a scrip
DDE message.

UMSG

VMSG
IMSG OMSG
Architecture of HyperChem 15

The Newer Client - Server Architecture

en>

en-

 slave
 to

must
 act

ternal

lity,
ith

 via

the
te

oper-

tead
ur
ity
For example, a user clicking with the mouse on the menu item <File/Op
will bring up the File Open dialog box. A program external to HyperChem
can do the identical thing by sending an IMSG,

menu-file-open

The resulting OMSG, in this case, is nil but the VMSG is identical to that g
erated by the UMSG.

The Newer Client - Server Architecture

For a number of reasons it makes sense to move away from the master -
architecture. In particular, if the services of the HyperChem front end are
be made available to you, other users, and third party programmers, you
be in command of the situation, not HyperChem. Thus HyperChem should
as a universal server to you, the client.

The HyperChem front end has essentially always acted as a server to ex
programs as, for example, with ChemPlus, HyperNMR, or programs like
Microsoft Excel. The CDK, however, extends and documents this capabi
making it possible to even replace Hypercube’s proprietary back ends w
third party back ends.

These client programs are generally started by the HyperChem front end
a custom menu in HyperChem. When the program begins executing it
requests services from HyperChem such as asking it to send a copy of
coordinates of the molecule currently on the screen. It might then compu
properties of the molecule and then ask HyperChem to display these pr
ties.

A client program need not reflect just a back end operation but could ins
augment the front end GUI or visualization capability of HyperChem. Yo
program can be of arbitrary design using HyperChem only for functional

Front
End

Back
End

New
Back
End

Your
Program

3rd
Party

Clients
Server

DDE
16 Chapter 2

The Network Architecture

mpu-
hem
ugh

ds,
ams
s-
run-

tion
ork .

e’s
roto-

,
 of
ity.
e as
ix
you do not want to reproduce. HyperChem can act as a GUI server, a co
tational server, or a visualization server all at the same time. The HyperC
back ends are not directly accessible to external programs but only thro
the HyperChem front end acting as a proxy.

The Network Architecture

As described above, the HyperChem front end, the HyperChem back en
and third party programs that are DDE compliant, such as Excel or progr
built with the Hypercube CDK, can communicate with each other via me
sages. This communication is initially assumed to occur on a single PC
ning Windows or NT.

Network DDE

Microsoft, however, has implemented Network DDE, in Windows 95 and
NT. Thus it is possible to place any of the various components of a solu
onto different PCs as long as they are connected by an appropriate netw

An old back end communicates with the front end by means of Hypercub
proprietary protocol while a new back end uses the open client-server p
col of the CDK.

UNIX

While the following discussion is not strictly relevant to this Windows CDK
a completely analogous CDK and capability is available for Unix versions
HyperChem. In this case DDE is replaced by a Pipe and Socket capabil
The Unix versions of HyperChem have a front end - back end architectur
well so that essentially everything we say here applies equally to the Un

Front
End

Your
Program

3rd
Party

Network

Back
End

DDE

Old

New

End
Back

Slave

Client
Architecture of HyperChem 17

The Network Architecture

ix
 plat-

e

e
ws
rd)

T
-

na-
u-
nix
-
o
trans-

for
 do
world once DDE messages and communication are replaced by their Un
equivalents. The HyperChem API, on the other hand, is portable across
forms.

Remote Back Ends

Hypercube, Inc. supports the mixing of Windows and NT with Unix in the
sense that Remote Unix Back Ends are available for Unix machines from
Digital Equipment Corporation, IBM, Silicon Graphics, and SUN. This
allows a desktop PC to use a Unix machine to perform compute intensiv
back end calculations.

These Unix back ends communicate in the older proprietary way with th
Windows or NT front end via a proprietary socket protocol. On the Windo
or NT side, DDE is replaced by equivalent socket (the WINSOCK standa
messages.

Mixing UNIX and Windows or NT

For completeness it ought to be possible to combine the Windows and N
CDK and the Unix CDK to allow a Unix 3rd party client application to com
municate properly with a Windows or NT desktop front end server. Alter
tively an NT client might like to use a UNIX machine for HyperChem vis
alization services. It is not yet possible, however, to mix windows and U
for these CDK functions. One possible way to obtain this capability (Win
dows front end HyperChem server and Unix back end client) would be t
have a 3rd-party Windows program receive Unix socket messages and
late them into DDE messages for Windows HyperChem.

This and the other network aspects of HyperChem are pointed out here
completeness. This manual and the Windows and NT version of the CDK

Front
End

Back
End

Socket

Old

Windows
or NT
Machine

Unix
Machine
18 Chapter 2

The Network Architecture

in-
not attempt to describe the equivalent Unix product but relate only to the W
dows and NT programs described here.
Architecture of HyperChem 19

The Network Architecture
20 Chapter 2

you

s to
r

h the
, to

per-
rom
 you
ith

pers
e
abili-
Chapter 3

Customizing HyperChem

Introduction

This chapter describes how HyperChem can be customized via:

• Scripting

• Custom Menus

These two capabilities allow you to automate many of the computations
perform with HyperChem or to customize HyperChem for your own pur-
poses. This chapter does not describe the interfacing of external program
HyperChem which, in itself, is a form of customization; that is left for late
chapters. Here we focus on how HyperChem can be customized throug
process of writing a set of scripts and through your ability, in Release 5.0
redefine the whole menu structure of the program if you chose to do so.

A Flexible Development Platform

Scripting and custom menus, by themselves, allow you to customize Hy
Chem in a very large variety of ways. It is possible to, in essence, start f
scratch with just a bare Window (no menus) and add only the capabilities
wish. Any menu item can be tied to the execution of an arbitrary script. W
Release 5.0 and the CDK, we at Hypercube, Inc. are working towards a
Chemical Operating System that allows end users and third-party develo
to develop their own products using our tools. With the ability to interfac
external programs to HyperChem and have them access any of the cap
ties of a custom HyperChem, a very flexible chemical development tool
becomes available.
21

What are Scripts?

uted
ript
 can
em
e-

s, if-
much
s a
m.

red
rm,

ound
uiv-
GUI
d,
DK.

s as
s in
re
.g.

cl/Tk
of
nds
What are Scripts?

A script consists of a sequence of individual script commands that are held in
a script file. Each script command consists of simple text that can be exec
to invoke a HyperChem action, to read or write HyperChem data, etc. A sc
can be created with a text editor such as the Windows Notepad. A script
be executed in HyperChem by simply opening the script with the HyperCh
<Script/Open...> menu item. Alternatively, scripts can be created and ex
cuted via the Script Editor of ChemPlus.

There are two kinds of scripts. The first consists of a simple straight-line
sequence of commands without any control structures (such as for-loop
statements, etc.). These are referred to as Type 1 scripts. The second,
richer, type of script has elaborate control structures and is referred to a
Type 2 script. Type 2 scripts contain Type 1 script commands within the

Type 1 (Hcl) Scripts

The first kind of script, the only kind available prior to Release 5.0, is refer
to as a Type 1 Script. These consist of a sequence of text lines of the fo

window-color green

The above script command, executed within a script, changes the backgr
workspace (window) color to green. Executing this script command is eq
alent to using the mouse and the <File/Preferences...> dialog box in the
to change the window color. We will often use this simple script comman
one of potentially hundreds, to illustrate many of the basic ideas in the C

With Release 5.0 and the CDK, one now refers to these script command
being part of the HyperChem Command Language (Hcl). Hcl command
the HyperChem Command Language, minus any possible arguments, a
identifiable as a contiguous sequence of words separated by hyphens, e
menu-file-start-log.

Type 1 scripts are held in *.SCR files, i.e they have a default SCR file exten-
sion.

Type 2 (Tcl/Tk) Scripts

The newer scripts in Release 5.0 are referred to as Type 2 Scripts or as T
Scripts. These scripts use a public domain Tcl/Tk interpreter that is part
HyperChem Release 5.0. The interpreter can interpret Hcl script comma
22 Chapter 3

Type 2 (Tcl/Tk) Scripts

by
ley
 be

eral
e Hcl
at
g
script

 to a
g its
imbedded in normal Tcl/Tk code. The Tcl/Tk interpreter was developed
John Ousterhout and collaborators at the University of California at Berke
and at Sun Microsystems. It is described in the following books that may
important to you in becoming an efficient developer of Type 2 Scripts:

• Eric F. Johnson, Graphical Applications with Tcl & Tk, 1996, M&T
Books, New York, N.Y., ISBN 1-55851-471-6.

• John K. Ousterhout, Tcl and the Tk Toolkit, 1994, Addison-Wesley,
Reading, Mass., ISBN 0-201-6337-X.

• Brent Welch, Practical Programming in Tcl and Tk, Prentice Hall, 1994.

It is also described at the following World Wide Web sites:

• http://www.sunlabs.com:80/research/tcl/

• http://www.sco.com/Technology/tcl/Tcl.html

The Tool Command Language orTcl part of Tcl/Tk describes a very gen
scripting language that can embed custom scripting operations such as th
script commands. The Tk part of Tcl/Tk describes an extension to Tcl th
makes it possible to easily create a graphical user interface (GUI) havin
menus, dialog boxes, etc. Thus a Type 2 script consists of a sequence of
lines that are a mixture of Tcl/Tk (“tickle”) lines and Hcl (“hickle”) lines.

Type 2 scripts add variables, do- or while-loops, if-statements, and so on
script, so that a script can now be a very general purpose program havin
own GUI, visualization, etc. An simple example of a Type 2 script is:

TclOnly

set i 10

while { $i > 0 } {

incr i -1

if { ($i - 2*($i/2)) == 1 } then {

hcExec window-color black } else {

hcExec window-color white }

}

Exit
Customizing HyperChem 23

Custom Menus

ack
r
t is
.

tion

his
k is

e
ded
t

 the

and
t”.

enu

uct.

enus

f the
n is
This script causes the background window color to alternate between bl
and white. The while-loop has the variable i going from 10,9,8... to 1. Fo
even values of i the window color is set to black while for odd values of i i
set to white. The TclOnly command indicates that no Tk window is needed
It should be the first command of any simple script that requires no addi
to the HyperChem graphical user interface. The hcExec (Hyperchem execute)
command is always followed by the appropriate Hcl command, which in t
case sets the color of the HyperChem workspace window. Note that Tcl/T
case sensitive; a command with the wrong case, such as Tclonly, would be an
invalid command. A Tcl script is normally exited with the Exit command.

Type 2 scripts are held in *.TCL files, i.e they have a default TCL file exten-
sion.

The whole while statement above is really a single Tcl/Tk command. Th
while command contains other embedded Tcl/Tk commands plus embed
Type 1 script commands. The hcExec command embeds Hcl commands tha
can be menu invocations, such as menu-file-open, direct commands, such as
do-molecular-dynamics, or HSV writes, such as window-color green. The
corresponding hcQuery command embeds HSV reads. Thus, the following
Tcl script creates a Tk window with a message, called .msg, contained in
window and displaying the coordinates of each of the atoms:

message .msg -text [hcQuery "coordinates"]

pack .msg

The pack command places widgets, such as .msg, in the main Tk window
controls their layout. Tk widgets are normally named to begin with a “do

Custom Menus

With Release 5.0 of HyperChem, you can now redefine each and every m
item to fully customize HyperChem’s menus. When HyperChem is first
invoked, it has a standard set of menus as with any other Windows prod
However, if one subsequently executes the Hcl script command:

load-user-menu custom.mnu

then the standard menus are discarded and replaced by a new set of m
defined by a menu file which, in the above case, is the file custom.mnu.
These menu files define the custom text of each menu button (for each o
new custom menus), and the action that is taken when each menu butto
24 Chapter 3

Custom Menus

can

ction,

d.
sist
 but-

e

ults
al
ny
pro-
er-

at

hen

e
key-
per-

 for
-
cept
pushed. The custom action for each menu button, as defined in the file,
be any Hcl script command.

For example, to re-implement the <File/New> menu item exactly as it is
shipped in the default product, the custom menu file should request the a

menu-file-new

when the appropriate button with text “New” on the “File” menu is pushe
A menu file is basically just a description of the text and the keyboard as
for each new menu button plus an associated Hcl script command for the
ton.

Because any of the button actions (Hcl script commands) could be of th
form,

read-tcl-script xxx.tcl

it is also possible to have any menu button execute a Tcl script. This res
in HyperChem being capable of having very generic menus and function
capability. That is, since a Tcl/Tk script can be executed upon pushing a
menu button, and since a Tcl/Tk script can, in principle, accomplish any
gramming task, there is no fundamental limitation to the generality of Hyp
Chem.

The following menu file, for example, creates a version of HyperChem th
has a single menu (“Custom”) with a single menu item (“Version”) which
does nothing other than inform the user of the current release number w
the menu button is pushed,

MENU "&Custom"

ITEM "&Version",query-value version

END

New keyboard accelerators are not available for custom menu items. Th
default HyperChem keyboard accelerators are always active. However,
board assists or shortcuts, usable with the Alt key and indicated by the am
sand, are available.

Before continuing with the description of user-defined menus and scripts
customizing HyperChem, we will first elaborate on the concept of Hyper
Chem State Variables (HSV’s). These are fundamental to the whole con
of customization or interfacing.
Customizing HyperChem 25

Custom Menus
26 Chapter 3

ept
per-
nd
 of
ms.
ably

 for
. In
ompli-
 of all
,
tered
et
ss.
ng
t of

 not

ys-
...>
Chapter 4

HyperChem State Variables

Introduction

This chapter describes a very important feature of HyperChem, the conc
of its current state and the variables that represent that state. These Hy
Chem State Variables (HSV’s) define the current state of visualization a
computation in HyperChem, e.g. the color of a window or the total energy
a molecule, and can be read and written by scripts or by external progra
these HSV’s are registered when HyperChem is invoked and can be reli
queried or modified from then on.

Registering of HSV’s

When HyperChem is first invoked, one of the things it does is to register,
reliable import and export, a large number (hundreds) of data structures
cases these data structures are just simple variables rather than more c
cated arrays, lists, etc. By registering these data structures we mean that
the internal data structures that come and go dynamically in HyperChem
these ones can be requested to be read or written at any time. Any regis
variable can be reliably and robustly accessed. If the HSV value is not y
available, HyperChem will issue a simple warning at the attempted acce
You needn’t worry about writing an HSV value to HyperChem and causi
its internal operation to be badly perturbed, apart from the intended effec
having a new value for an HSV.

An Example of an HSV

An example of a HyperChem State Variable is window-color. The names for
these variables are fixed inside the code of HyperChem and may or may
always be optimally descriptive. The variable window-color defines the back-
ground of the HyperChem workspace (the area displaying a molecular s
tem). It is commonly black but can be changed via the <File/Preferences
27

Introduction

is an
-

in
an,

 writ-
y no
er-
ole-
ave

n

otal
ia a

con-

sca-
ore
menu item to be any one of the 8 basic HyperChem colors. The variable
enumerated variable of type Enum. That is, it is one of a small number of pre
defined values represented internally in the computer by an integer but
your program code as some member of the set {Black, Blue, Green, Cy
Red, Violet, Yellow, or White}.

Another example of an HSV with more chemical content is dipole-moment.
This is a R/W variable also and behaves just as window-color. However, we
prefer to use window-color in many of our examples because it is immedi-
ately visually obvious when this variable changes. The consequences of
ing a new value for the dipole moment are also a little obscure. In actualit
harm comes from writing an arbitrary value for the dipole moment to Hyp
Chem; it just may not correspond to the correct dipole moment for the m
cule on the screen. It will be overwritten when a calculation, such as a w
function calculation, is performed that computes the dipole moment.

Read/Write Nature of HSV’s

All HSV’s can be classified as Read-Only (R) or as Read-Write (R/W). A
example of a variable that is read-only is selected-atom-count. HyperChem
makes extensive use of “atom selections” and this variable reports the t
number of currently selected atoms. While it is possible to select atoms v
script, it makes no sense to write new values of this variable that would
tradict the number of atoms that HyperChem determines to be currently
selected. This number will be automatically updated by HyperChem if an
external program were to select some atoms in HyperChem.

Using HSV’s

Here we describe the reading and writing of the simplest type of HSV, a
lar. Later, we will describe the reading and writing of HSV’s that have a m
complicated structure. We use the simple HSV, window-color, as our exam-
ple.
28 Chapter 4

Introduction

r
m-

t

e
-

V is
least

hem

t the
al
-
e
y, the
than

G

es it
Writing

An HSV is written by simply giving its new value after the variable, with o
without an equal sign. Thus the following are all appropriate Hcl script co
mands for turning the background screen color to green:

window-color green

window-color = green

WInDOw-CoLOR=GReeN

Hcl script commands are case insensitive and spacing is ignored excep
within the HSV name.

Reading

Two equivalent syntactical methods are available for reading HSV’s. Th
first is through a Hcl command, query-value, which takes an HSV as an argu
ment:

query-value window-color

The second and completely equivalent way to ask for the value of an HS
to simply name the HSV placing a question mark after it, separated by at
one space:

window-color ?

Either of these procedures returns to the questioner (provided the HyperC
screen is green) the output message (OMSG) string:

window-color = Green

The output message is returned to an external program, if that is who sen
original query or, by default, to a message box on the screen if the origin
query came from an internal script. Through the use of an Hcl script com
mand, omsgs-to-file, the message string generated by the Hcl script can b
placed in a file rather than appear in a message box on the screen. Finall
returning OMSG string could have been shortened to just “Green” rather
“window-color = Green” if the HSV, query-response-has-tag, had been set to
false prior to issuing the original query.

Notifications

It is possible to make a request to HyperChem that you be sent an OMS
should the value of an HSV change. The message you might eventually
receive is identical to that which you could receive by performing a query-
value. The OMSG is repeatedly sent to you whenever the variable chang
HyperChem State Variables 29

Introduction

ica-
oni-

d

le,
nd
er-

an

 has
g at

le
m-

orm,
 in

dex

 in
c-

-

value. For data structures more complex than simple variables, the notif
tion is sent if any member of the data structure changes. For example, m
toring the window-color is accomplished with the script command,

notify-on-update window-color

The notification can be cancelled at any later time via the script comman

cancel-notify window-color

Notifications are quite powerful and can be extremely useful. For examp
you could ask for a notification of the total-energy during an optimization a
easily plot a graph of the optimization with the values sent to you by Hyp
Chem. These notifications are really only meaningful in the context of an
external program interfaced to HyperChem rather than in the context of
internal script.

Atom Numbering for HSV’s

It is important in using HSV’s to understand how HyperChem numbers
atoms. Each molecule (connected graph) in the HyperChem workspace
its own number (1, 2,...). The atoms in any molecule are numbered startin
1 also. Thus a unique id for an atom includes two numbers - the molecu
number and the atom number within the molecule (atom-in-molecule nu
ber).

Thus if a number is to be used as a unique index for an atom, it has the f
(atom number, molecule number). For example, (2,1) is the second atom
the first molecule. The atom index always comes before the molecule in
in conventional HSV usage.

Argument Types for HSV’s

The types of arguments that HSV variables have are the following:

Boolean Yes or no, true or false, 0 or 1.

string Text (letters, characters, or symbols, in upper- or lower-
case, unlimited number of characters). Enclose a string
quotes (“ ”) if it contains spaces, tabs, or newline chara
ters.

filename A type of string requiring a DOS filename.

enum A type of string requiring one of a limited set of possibili
ties.

int An integer.
30 Chapter 4

Kinds of HSV’s

-

tom
ith

ve

 on

y

-
d an

lar
po-

fol-

d by
are
float A floating point (decimal) number. For an angle, the num
ber is in degrees.

An int or float may have limits which are checked. For example, create-a
takes an int that is restricted to the range (1..103) and creates an atom w
this atomic number at the origin of the molecular system. Floats may ha
similar limits. A string may not always need to be enclosed in quotes
(“string”) but it is safer to do so. Appropriate values for an enum depend
the context, of course.

Kinds of HSV’s

A number of different types of HSV’s are available. They are classified b
how they are assigned values. The simplest are just scalars.

Scalar HSV’s

A scalar HSV is one which does not use an index. A simple example is max-
iterations, the maximum number of allowed iterations in a self-consistent
field (SCF) calculation. The argument is an int in the range (1..32767) an
assignment (write) looks as follows:

max-iterations = 100

The equal sign is not strictly necessary and white space will do:

max-iterations 100

The number of arguments for a scalar HSV, while normally one, it not
restricted to one. For example the HSV, dipole-moment-components, takes
three float arguments - the x, y, and z components. It is defined as a sca
since you do not use an array index with it but assign or query all its com
nents simultaneously. It is written or assigned, with a flexible syntax, as
lows:

dipole-moment-components 1.0 2.0 3.0

dipole-moment-components = 1.0 2.0 3.0

dipole-moment-components = 1.0, 2.0, 3.0

That is, the arguments may begin with an equal sign or not, be separate
commas or not, etc. The syntax is flexible but equal signs and commas
suggested as an appropriate convention.
HyperChem State Variables 31

Kinds of HSV’s

,
in
F)

ula-
als

 UHF

)

ce,
tive
Vector HSV’s

A vector HSV is one which takes a single index. An example is the HSV
alpha-orbital-occupancy. This variable describes the number of electrons
an alpha (spin up) molecular orbital from an unrestricted Hartree-Fock (UH
calculation. When the calculation is a restricted Hartree-Fock (RHF) calc
tion having no beta occupied orbitals different from alpha occupied orbit
then the alpha-orbital-occupancy variable describes the total occupancy of
alpha and beta electrons in an orbital. Thus the arguments are 0 and 1 for
calculations and 0 and 2 for RHF calculations. Thus, for H2 you can exter-
nally set the first (HOMO) orbital to be occupied and the second (LUMO
orbital to also be occupied (corresponding to H2

2-) by the following script
commands:

alpha-orbital-occupancy(1) 2

alpha-orbital-occupancy(2) 2

or, equivalently,

alpha-orbital-occupancy(1) = 2

alpha-orbital-occupancy(2) = 2

For a standard minimal basis calculation on H2, the query,

alpha-orbital-occupancy ?

would return the normal result

alpha-orbital-occupancy(1) = 2

alpha-orbital-occupancy(2) = 0

That is, even though a query such as

alpha-orbital-occupancy(1) ?

is perfectly valid, it is possible to query for all relevant indices (1..2) at on
as we have done above. It is, of course, also possible to use the alterna
syntax,

query-value alpha-orbital-occupancy(1)
32 Chapter 4

A Finite State Machine View of HyperChem

ices
 of
here
atom

er
 3
ordi-

ing

 this
ived
se-
uts
n

es-

ing
Array HSV’s

An array HSV is defined to be one which takes two indices. These two ind
are always the atom index and the molecule index (iat, imol). If one thinks
this combination as a single unique index, then an array is just a vector w
the index is a unique atom number. A simple example is the mass of an
which is represented by the HSV, atom-mass. The atomic masses of H2 would
be assigned as follows,

atom-mass(1,1) = 1.008

atom-mass(2,1) = 1.008

That is, the first and second atoms of molecule one are assigned. Anoth
example is the Cartesian coordinates of the atoms. This is an array with
arguments analogous to the dipole moment components above. The co
nates of H2, again, could be assigned as follows,

coordinates (1,1) = 0.0, 0.0, 0.0

coordinates (2,1) = 0.0, 0.0, 0.74

An alternative to this is to assign all coordinates at once,

coordinates = 0 0 0 0 0 0.74

Note again that there is flexibility in using commas or equal signs or not us
them.

A Finite State Machine View of HyperChem

HyperChem has the characteristics of a Finite State Machine (FSM). By
it is meant that HyperChem has a finite set of internal states; an input rece
while in a particular state causes a transition to a new state with the con
quent emission of an output. The set of states and the set of inputs/outp
associated with the set of possible state transitions fully characterizes a
FSM.

In the HyperChem case, the inputs are messages and the outputs are m
sages. these messages are of four kinds (two input and two output):

• User message (UMSG) - an input message coming from the user us
the mouse of keyboard.
HyperChem State Variables 33

A Finite State Machine View of HyperChem

om

cted

Gs

e or
nd
nge
 with

 you
l
. The
tion

nt
 the

o
k ren-
mage.
ate

o)
ted as
t>

 or
 dis-
• Visual message (VMSG) - an output message representing a visual
change in the screen.

• Input message (IMSG) - an input message coming from a script or fr
a Dynamic Data Exchange (DDE) message.

• Output message (OMSG) - an output message going to a script dire
target or to an external receiver of DDE messages.

The normal interactive use of HyperChem has UMSGs as input and VMS
as output. That is, when you click the mouse, something changes on the
screen. It is possible to drive HyperChem with IMSGs rather than a mous
keyboard. With an IMSG for input, one obtains possibly both a VMSG a
an OMSG for output. That is, an IMSG, in addition to causing a visual cha
on the screen may result in an OMSG being sent to a receiver associated
the sender of the IMSG.

IMSGs are meant to be a superset of UMSGs. It is intended that anything
can do with the mouse you can do with an IMSG. In addition, IMSGs wil
trigger actions and state changes that are impossible by direct interaction
target for OMSGs depends on the source of the IMSG and on the redirec
of OMSGS by previous IMSGs. These generic concepts have two curre
implementations. One is implemented by the Hcl scripting language and
other is implemented by dynamic data exchange (DDE).

As an example of the state machine aspects of HyperChem, consider tw
states of HyperChem shown below as circles. The state is whether a stic
dering is shown on the screen as a normal image or as a stereographic i
Equivalently, the two states are described by an internal HyperChem St
Variable (HSV) called show-stereo. when this variable is false, a normal
(mono) image is displayed but when this variable is true, a double (stere
image is displayed. The transitions between the two states are represen
arrows. the transition is triggered by an <input> and results in an <outpu
and each transition (arrow) is labelled:

transition: <input>/<output>

The input in this case is an IMSG of type “show-stereo”, the name of the
HSV, with an argument (part of the data of the message) of either “true”
“false”. The output message is simply a VMSG that changes the screen
play. No OMSG is emitted in this case.
34 Chapter 4

An HSV Server View of HyperChem

nt-
 a
and
rd-
the
uest
d

his
 it
 come
 pro-
per-
 via
s are

n
age.

he
.

An HSV Server View of HyperChem

The HyperChem State Machine acts as a universal HSV Server in a Clie
Server architecture. This is consistent with HyperChem attempting to be
core component of any chemical computation. Other programs, scripts,
third-party processes are clients that HyperChem serves. Consider a thi
party application such as one that you would potentially write. If you want
molecular coordinates to perform a calculation with, you must make a req
to HyperChem for the coordinates rather than expect HyperChem to sen
them on its own. HyperChem is sitting in a loop servicing requests like t
as they come in. When it receives the request from you for coordinates,
sends them and then looks for another request. Some of these requests
from a user interacting with a mouse and some come from you and your
gram requesting further data, requesting the ability to access certain Hy
Chem functionality, or requesting a change in HyperChem’s internal state
the setting of a HyperChem State Variable (HSV). These server request
what we have called UMSGs or IMSGs above. A UMSG comes from an
interacting user clicking on a mouse or the keyboard while an IMSG is a
internal request in a script or an external request coming in a DDE mess

Further information on HSV’s is contained in Chapter 6, Appendix A, or t
HyperChem Reference Manual.

show-stereo false / see mono rendering

show-stereo true / see stereo rendering

stereo mono
HyperChem State Variables 35

An HSV Server View of HyperChem
36 Chapter 4

bil-
om-

items
nt

nu
Chapter 5

Custom Menus

Introduction

This chapter describes in detail the customizing of HyperChem via your a
ity to add menu items to the <Script> menu plus your ability to redefine c
pletely the menu structure with a menu (*.mnu)file.

Script Menu Items

There has been the ability in earlier releases of HyperChem to add menu
to the <Script> menu. This capability is still there, with two slightly differe
ways of invoking it (using the “third” menu item as an example):

(1) change-user-menuitem 3, �Sample�, �sample.scr�

script-menu-enabled(3) = true

(2) script-menu-caption(3) = �Sample�

script-menu-command(3) = �read-script sample.scr�

script-menu-enabled(3) = true

Executing the above script, Example1.scr from the HyperChem CD-
ROM, illustrates this behavior. For simplicity, the sample.scr file con-
tains only the single Hcl script command, window-color=green, which gives
a quick visual feedback of the effect of the new menu item. The new me
item is shown below:
37

Menu Files

 the
with
ems

ew
ed
now

ds,

nus
 the
Up to ten new menu items, with vector indices 1..10, are available under
<Script> menu. Each new menu item shows up in the order associated
the vector index which was assigned to it, such as the “3” above. Menu it
that have not been assigned a caption do not show up.

Menu Files

What is new in Release 5.0 of HyperChem is that, in addition to adding n
menu items in the <Script> menu, all the menu items can now be design
from scratch and instead of just executing a Hcl script any menu item can
execute a much more generic Tcl/Tk script.

This new functionality comes about via the three new Hcl script comman

load-user-menu <menu file (*.mnu)>

load-default-menu

switch-to-user-menu

The first of these loads and switches HyperChem to a set of custom me
defined in a menu file. The remaining two switch back and forth between
default hard-wired menus and the user custom menus, provided they have
been defined earlier by the first script command of the above three.
38 Chapter 5

Menu Files

.
om-

ing

e
wn

 the
A menu file need not have the *.mnu extension since it simply a text file but
it is convenient for menu files to be recognized with their own extension
These menu files define the left-to-right and top-to-bottom structure of a c
plete set of menus via sequential text lines of the form,

MENU <text-string>

ITEM <text-string>, <Hcl-script-command>

ITEM ...

END

The text string is the text that you see on the menu or menu item, includ
the naming of a possible keyboard assist via the ampersand, “&”, being
placed prior to the character that is to be used with the Alt key, as per th
Microsoft Windows standard. If a menu has no subset of items but is its o
menuitem and can be activated by clicking on it alone, it is defined in the
form,

MENUITEM <text-string>, <Hcl-script-command>

Cascading menus are not supported. The menu file that corresponds to
default set of hard-wired menus is on the HyperChem CD-ROM as
default.mnu. It looks as follows:

;

; 1996 (c) Hypercube, Inc.

; User Customizable Menu

;

MENU "&File"

ITEM "&New\tCtrl+N",menu-file-new

ITEM "&Open...\tCtrl+O",menu-file-open

ITEM "&Merge...",menu-file-merge

ITEM "&Save\tCtrl+S",menu-file-save

ITEM "Save &As...\tCtrl+A",menu-file-save-as

SEPARATOR

ITEM "S&tart Log...",menu-file-start-log

ITEM "Stop Lo&g",menu-file-stop-log

ITEM "&Log Comments...",menu-file-log-comments

SEPARATOR

ITEM "&Import...",menu-file-import

ITEM "&Export...", menu-file-export

SEPARATOR

ITEM "&Print...\tCtrl+P", menu-file-print

SEPARATOR

ITEM "Pr&eferences...",menu-file-preferences
Custom Menus 39

Menu Files
SEPARATOR

ITEM "E&xit",menu-file-exit

END

MENU"&Edit"

ITEM "&Clear\tDelete",menu-edit-clear

ITEM "C&ut\tCtrl+X",menu-edit-cut

ITEM "C&opy\tCtrl+C",menu-edit-copy

ITEM "Copy ISIS S&ketch",menu-edit-copy-isis-sketch

ITEM "&Paste\tCtrl+V",menu-edit-paste

SEPARATOR

ITEM "Cop&y Image\tF9",menu-edit-copy-image

SEPARATOR

ITEM "&Invert",menu-edit-invert

ITEM "&Reflect",menu-edit-reflect

SEPARATOR

ITEM "Rotat&e...",menu-edit-rotate

ITEM "&Translate...",menu-edit-translate

ITEM "&Zoom...",menu-edit-zoom

ITEM "Z C&lip...",menu-edit-z-clip

SEPARATOR

ITEM "&Align Viewer...",menu-edit-align-viewer

ITEM "Align &Molecules...",menu-edit-align-molecules

SEPARATOR

ITEM "Set &Bond Length...",menu-edit-set-bond-length

ITEM "Set Bon&d Angle...",menu-edit-set-bond-angle

ITEM "Set Bo&nd Torsion...",menu-edit-set-bond-torsion

END

MENU"&Build"

ITEM "&Explicit Hydrogens",menu-build-explicit-hydrogens

ITEM "&Default Element...",menu-build-default-element

ITEM "&Add Hydrogens",menu-build-add-hydrogens

ITEM "&Model Build",menu-build-model-build

SEPARATOR

ITEM "Allow &Ions",menu-build-allow-ions

ITEM "&United Atoms",menu-build-united-atoms

ITEM "A&ll Atoms",menu-build-all-atoms

SEPARATOR

ITEM "Calculate T&ypes",menu-build-calculate-types

ITEM "Compile Type &Rules",menu-build-compile-type-rules

SEPARATOR

ITEM "&Set Atom Type...",menu-build-set-atom-type

ITEM "Set &Mass...",menu-build-set-mass

ITEM "Set C&harge...",menu-build-set-charge
40 Chapter 5

Menu Files
ITEM "&Constrain Geometry...",menu-build-constrain-geometry

ITEM "Constrain &Bond Length...",menu-build-constrain-bond-length

ITEM "Constrain Bond An&gle...",menu-build-constrain-bond-angle

ITEM "Constrain Bond &Torsion...",menu-build-constrain-bond-

torsion

END

MENU"&Select"

ITEM "&Atoms",menu-select-atoms

ITEM "&Residues",menu-select-residues

ITEM "&Molecules",menu-select-molecules

SEPARATOR

ITEM "M&ultiple Selections",menu-select-multiple-selections

ITEM "&Select Sphere", menu-select-select-sphere

SEPARATOR

ITEM "S&elect All",menu-select-select-all

ITEM "&Complement Selection",menu-select-complement-selection

ITEM "Se&lect...",menu-select-select

ITEM "&Name Selection...",menu-select-name-selection

SEPARATOR

ITEM "E&xtend Ring",menu-select-extend-ring

ITEM "Ex&tend Side Chain",menu-select-extend-side-chain

ITEM "Exten&d to sp3",menu-select-extend-to-sp3

ITEM "Select Bac&kbone",menu-select-select-backbone

END

MENU"&Display"

ITEM "&Scale to Fit\tSpace",menu-display-scale-to-fit

ITEM "&Overlay",menu-display-overlay

SEPARATOR

ITEM "Show &All",menu-display-show-all

ITEM "Sho&w Selection Only",menu-display-show-selection-only

ITEM "&Hide Selection",menu-display-hide-selection

SEPARATOR

ITEM "&Rendering..."menu-display-rendering

ITEM "Last Renderin&g\tF2"menu-display-last-rendering

SEPARATOR

ITEM "Show &Isosurface\tF3"menu-display-isosurface

ITEM "Isosur&face...\tF4"menu-isosurface-control

SEPARATOR

ITEM "Show H&ydrogens",menu-display-show-hydrogens

ITEM "Show Periodic &Box",menu-display-show-periodic-box

ITEM "Show &Multiple Bonds",menu-display-show-multiple-bonds

ITEM "Show Hy&drogen Bonds",menu-display-show-hydrogen-bonds

ITEM "Recomp&ute H Bonds",menu-display-recompute-h-bonds
Custom Menus 41

Menu Files
ITEM "Show Inertial A&xes",menu-display-show-inertial-axes

ITEM "Show Dipole Momen&t",menu-display-show-dipole-moment

SEPARATOR

ITEM "&Labels...",menu-display-labels

ITEM "&Color...",menu-display-color

ITEM "&Element Color...",menu-display-element-color

END

MENU"D&atabases"

ITEM "&Amino Acids...",menu-databases-amino-acids

ITEM "&Make Zwitterion",menu-databases-make-zwitterion

ITEM "&Remove Ionic Ends"menu-databases-remove-ionic-ends

SEPARATOR

ITEM "&Nucleic Acids...",menu-databases-nucleic-acids

ITEM "Add &Counter Ions",menu-databases-add-counter-ions

SEPARATOR

ITEM "M&utate...",menu-databases-mutate

END

MENU "Se&tup"

ITEM "&Molecular Mechanics...",menu-setup-molecular-mechanics

ITEM "&Semi-empirical...",menu-setup-semi-empirical

ITEM "&Ab Initio...",menu-setup-ab-initio

SEPARATOR

ITEM "&Periodic Box...",menu-setup-periodic-box

ITEM "&Restraints...",menu-setup-restraints

ITEM "Set &Velocity...",menu-setup-set-velocity

SEPARATOR

ITEM "S&elect Parameter Set...",menu-setup-select-parameter-set

ITEM "C&ompile Parameter File",menu-setup-compile-parameter-file

SEPARATOR

ITEM "&Reaction Map...", menu-setup-reaction-map

END

MENU "&Compute"

ITEM "&Single Point",menu-compute-single-point

ITEM "&Geometry Optimization...",menu-compute-geometry-

optimization

SEPARATOR

ITEM "&Molecular Dynamics...",menu-compute-molecular-dynamics

ITEM "&Langevin Dynamics...",menu-compute-langevin-dynamics

ITEM "Monte &Carlo...",menu-compute-monte-carlo

SEPARATOR

ITEM "&Vibrations",menu-compute-vibrations

ITEM "&Transition State...",menu-compute-transition-state

SEPARATOR
42 Chapter 5

Simple Example

lus
r-
xcept

tton
e a
s

the
ITEM "&Plot Molecular Properties...", menu-compute-plot-molecular-

properties

ITEM "&Orbitals...",menu-compute-orbitals

SEPARATOR

ITEM "Vi&brational Spectrum...",menu-compute-vibrational-spectrum

ITEM "&Electronic Spectrum...",menu-compute-electronic-spectrum

END

MENU "Sc&ript"

ITEM "O&pen Script...",menu-script-open-script

ITEM "&Compile Script...",menu-script-compile-script

END

MENUITEM "Ca&ncel",menu-cancel

MENU "&Help"

ITEM "&Index",menu-help-index

ITEM "&Keyboard",menu-help-keyboard

ITEM "&Commands",menu-help-commands

ITEM "&Tools",menu-help-tools

ITEM "&Scripts \& DDE",menu-help-scripts-&-DDE

ITEM "&Glossary",menu-help-glossary

ITEM "&Using Help",menu-help-using-help

SEPARATOR

ITEM "&About HyperChem", menu-help-about-hyperchem

END

An extension of this menu file, called chemplus.mnu, is on the Hyper-
Chem CD-ROM to enable users of Release 5 to continue using ChemP
from menu items. [Although ChemPlus 1.5 continues to work with Hype
Chem 5.0, the ChemPlus modules cannot be activated by menu items e
through a menu file such as described here].

Simple Example

The custom menus can be illustrated by executing the script,
Example2.scr from the HyperChem CD-ROM:

script-menu-caption(1) = "Rotate Menus"

script-menu-command(1) = "load-user-menu rotate.mnu"

script-menu-enabled(1) = true

This script puts a new menu item in the <Script> menu. The new menu bu
has the text, “Rotate Menus” on it. Pushing this menu button will execut
script command, as shown above, that loads a custom set of user menu
(rotate.mnu) rather than the hard-wired default menus that come with
Custom Menus 43

Simple Example

he
e
u
.

enu
ted
oard

ard-

e

. In
hree
, or
and
ack
. by

on
ng
product. A set of custom menus is characterized by a menu file (*.mnu),
which in this case is the set of menus defined in rotate.mnu (from the
HyperChem CD-ROM):

MENU "&File"

ITEM "&New\tCtrl+N",menu-file-new

ITEM "&Open...\tCtrl+O",menu-file-open

ITEM "E&xit",load-default-menu

END

MENU"&Rotate"

ITEM "&X Axis",read-tcl-script rotatex.tcl

ITEM "&Y Axis",read-tcl-script rotatey.tcl

ITEM "&Z Axis",read-tcl-script rotatez.tcl

END

MENUITEM "Ca&ncel",menu-cancel

This menu file is characteristic of all menu files in that it simply defines t
individual menus and menu items from left to right and top to bottom. Th
key words MENU, MENUITEM and ITEM introduce a normal menu, a men
without any underlying items, and an individual menu item within a menu
Each menu is defined by the text string label for that menu while each m
item is defined by the text string plus a Hcl script command that is execu
when that menu item is chosen. Each text string can be assigned a keyb
assist with the ampersand, “&”.

The way to have this file define menus that are identical to the default h
wired menus is to define a menu item with a script command that is a menu
invocation such as,

menu-file-new

A menu item can be set to execute any Hcl script command. By using th
script commands, read-script and read-tcl-script, any generic Hcl script or
Tcl/Tk script stored in a file can be triggered by each custom menu item
the above case, a Tcl script file is attached to each member of a set of t
menu items for continuously rotating the molecular system about the x, y
z axis. The menu item <File/Exit> has been set to execute a script comm
that returns to the hard-wired default menus. In this way it is simple to go b
and for between the two sets of menus by just clicking on menu items, i.e
clicking on <Script/Rotate Menus> to obtain the special menus for rotati
only and by clicking on <File/Exit> to return to the default menus. Executi
44 Chapter 5

Simple Example

tes

irly
ility

Tk
ace
the original Example2.scr script and then clicking on <Script/Rotate
Menus> gives a version of HyperChem that is shown below.

The rotatez.tcl script, which is included on the HyperChem CD-ROM, rota
the molecule about the z axis and is as follows:

TclOnly

hcExec "query-response-has-tag false"

hcExec "cancel-menu = true"

for {set i 0} {$i < 36500} {incr i} {

hcExec "rotate-molecules x 5"

set we_quit [hcQuery cancel-menu]

if { $we_quit == "false" } { break }

update

}

This is not the place to describe Tcl/Tk scripts in detail but this script is fa
simple and illustrates many of the general ideas of how universal is the ab
to customize HyperChem. The first Tcl command, TclOnly [note that Tcl/
is case sensitive] indicates that this script needs no graphical user interf
Custom Menus 45

Simple Example

w
ow,
al

not
for

grees
gle>

ential
 of
-
ns.
side

ve
e
uld
se
d
e
rue”

cript

ncel
n,

ni-

on
GUI) or extra windows. By default, without this command, a simple windo
is put up where any Tk widgets are placed. Since we do not want this wind
we indicate that this Tcl/Tk script is a Tcl only script without any extra visu
elements.

The HyperChem command language, Hcl, and the HyperChem GUI do
have any capability for continuously rotating a molecule. The GUI allows
manually rotating a molecule and the script command,

rotate-molecules x <angle>

rotates the molecular system about, in this case, the x axis by <angle> de
as a one-shot, non-continuous motion. To see continuous motion, the <an
must be small and the script command repeated a large number of sequ
times even for a “single” rotation. The way to obtain continuous rotation,
course, is to have a do, while or for-loop of these individual rotation com
mands. The Tcl code above has a simple “for-loop over i” of 36500 iteratio
It remains only to describe the Hcl script commands that are embeded in
Tcl and the handling of the Cancel menu.

The Tcl language embeds all possible Hcl commands into the language
through the syntax,

hcExec <Hcl script command> and

hcQuery <name of HSV>

The basic idea here is to place the Hcl script command, rotate-molecules
(about the z axis by 5 degrees), inside the for-loop as is done in the abo
script. The remaining complexity of the Tcl script is all associated with th
handling of the Cancel button. Without the Cancel button, the rotation wo
go on forever, or at least for 7200 complete rotations. The trick is to sen
whether the Cancel button has been pushed while executing the loop an
break out of the loop if this is so. As with all queries of HSV’s, there is th
possibility of the answer coming back with a tag, such as “cancel-menu=t
or as just the raw value, “true”. We first ensure that only raw values are
returned so as to simplify the parsing required. We thus execute the Hcl s
command,

query-response-has-tag = false

Next, we disable (gray-out) the usual menus and enable (blacken) the Ca
menu via the following script command, just prior to beginning the rotatio

cancel-menu = true

This (Cancel-enabled, Normal-disabled) state of HyperChem can be mo
tored by enquiring about the HSV, cancel-menu. If it is true, then the Cancel
button is enabled and it can be clicked upon at any time. If you do click
46 Chapter 5

Further Customization

es
aks
ent
on-

en
it is

c
l-

t is
 the
this Cancel button, it becomes disabled and the value of the HSV becom
false. The Tcl script looks for this cancel operation each iteration and bre
out of the loop if it occurs. The only other Tcl command that needs comm
is the update command. Without this, Tcl would not temporarily release c
trol to Windows and sense the change made to the cancel-menu HSV in
HyperChem. It would be busy just executing “its own for-loop code”. Wh
you want an immediate update of a Tk dialog box or a HyperChem HSV,
best to place an appropriate update command inside a Tcl script.

Further Customization

The name of the HyperChem window can be modified to identify specifi
custom versions of HyperChem. The is very straight forward using the fo
lowing Hcl script command.

custom-title <addendum to HyperChem name>

In addition, if so desired, the tool bar can be eliminated using the hide-toolbar
HSV. Thus, the Hcl script, stored on the HyperChem CD-ROM as
Example3.scr,

custom-title = �My Version�

hide-toolbar = true

results in the following window, having a custom name and no toolbar. I
still possible without a toolbar to change the HyperChem cursor tool using
mouse-mode HSV.
Custom Menus 47

Further Customization
48 Chapter 5

ands

ty,
vi-
mes

 con-
t of
t that

h is

er 4.
o

t
-

Chapter 6

Type 1 (Hcl) Scripts

Introduction

Type 1 scripts, the simplest scripts, are simple sequences of script comm
each of which conform to the Hyperchem Command Language (Hcl - pro-
nounced “hickle”). These scripts have been part of HyperChem since its
inception but with the addition, in Release 5.0, of Tcl/Tk scripting capabili
it is necessary to clarify our terminology somewhat. Thus, what was pre
ously referred to simply as a script command or script message now beco
a Hcl command or Hcl script command. These Hcl script commands can
stitute the totality of a script, be imbedded in a Tcl script, or be the conten
certain external messages sent to HyperChem by other programs. A scrip
consists solely of Hcl commands is a Type 1 or Hcl script.

Hcl Script Commands

A Hcl script consists of a sequence of Hcl script commands, each of whic
a single line of Ascii text. These Hcl script commands are of four types:

• An HSV read

• An HSV write

• A menu activation

• A direct command

HSV’s

The HyperChem State Variables (HSV’s) have been described in Chapt
HyperChem makes these variables available to external programs and t
internal scripts, for reading and possibly for writing. They need not be
described again here other than for completeness in describing Hcl scrip
commands. Using dipole-moment as an example of an HSV, a Hcl script com
49

Introduction

em

yes

n a
lent

g on
en
ular
 the

l but
ng a

ch
ys,

em
ia-

 of
en,

ou
mand can read the value (enquire about the current value that HyperCh
maintains) by the Hcl script command,

query-value dipole-moment

or, alternatively, via the equivalent but slightly different syntax,

dipole-moment ?

You can write the value (assuming you wish to assign a value of 2.5 Deb
to the dipole moment) via the Hcl script command,

dipole-moment 2.5

Menu Activations

A menu activation is a replacement for the user clicking with the mouse o
menu item (menu button). Every menu item of HyperChem has an equiva
Hcl script command that accomplishes exactly the same effect as clickin
the menu item. These Hcl script commands all start with “menu-” and th
name the particular menu and finally a string representation of the partic
menu item, all separated by hyphens. Thus, the equivalent of clicking on
menu item <File/Save As...> is to open a *.scr file and execute the Hcl
script command,

menu-file-save-as

All these menu activations are listed in the HyperChem Reference Manua
each can be inferred just by looking at the HyperChem menus and putti
hyphen between every word of the text of the menu item. Thus, if the Setup
Menu contains the menu button Select Parameter Set..., the proper script
command is,

menu-setup-select-parameter-set

One exception, of sorts, to this rule is the “Model Build...” menu item whi
sometimes reads, “Add H & Model Build...” The script command is alwa

menu-build-model-build

Direct Commands

To open (read in) a file you normally click with the mouse on the menu it
<File/Open...> and bring up a dialog box to be filled out with appropriate d
log box values prior to hitting the OK button which initiates the reading in
the file. Suppose you wanted to read in a Protein Data Bank (PDB) file. Th
prior to hitting OK, you need to set the default file type to be *.ENT in the
dialog box in addition to choosing the name of the appropriate file that y
50 Chapter 6

Introduction

ou

ait-
y-

 go
nd.

ding
ng
pec-
 the

alog
u

and

ping
om-

ne

 in
c-
want to read in. You might like a script to automate these actions but if y
used the script command

menu-file-open

the script would stop with the File Open dialog box sitting on the screen w
ing for you to hit the OK button to initiate the reading of the file. This is an
thing but automation if you have to be there to click on OK! Scripts must
beyond imitating the actions of a user at a keyboard or with mouse in ha

To solve this problem, a script command is needed that initiates the rea
of a file using the current values of the dialog box settings without bringi
up the dialog box at all. If different setting are needed than are in the pros
tive dialog box, these values can be set prior to calling for the opening of
file. The script command open-file filename does the job. It is a direct com-
mand that bypasses a dialog box to get the job done using the current di
box settings. If you wanted to read, for example, a glucagon PDB file yo
could simply execute the script,

file-format pdb

open-file glucagon.ent

This is completely equivalent to invoking the <File/Open...> dialog box,
selecting PDB as the file format, filling in the File Name as glucagon.pdb,
hitting OK to dismiss the dialog box and initiate the reading of the file.

Other direct script commands cause actions that have no immediate map
to a GUI action. The direct script commands consist of the name of the c
mand followed by one or more arguments, each separated by at least o
space or a comma:

hcl-command-name <argument1>, <argument2>, ...

An argument is one of:

Arguments

The types of arguments for variables or commands are the following:

Boolean Yes or no, true or false, 0 or 1.

string Text (letters, characters, or symbols, in upper- or lower-
case, unlimited number of characters). Enclose a string
quotes (“ ”) if it contains spaces, tabs, or newline chara
ters.

filename A type of string requiring a DOS filename.
Type 1 (Hcl) Scripts 51

Introduction

-

-

the
nd,
s
s

un

ich
as

val-
etails.

Hcl
enum A type of string requiring one of a limited set of possibili
ties.

int An integer.

float A floating point (decimal) number. For an angle, the num
ber is in degrees.

Another example of a direct command is:

do-molecular-dynamics

This allows a script to perform molecular dynamics calculations without
manual intervention of a dialog box. Prior to executing this direct comma
the script could set all the relevant HSV’s for molecular dynamics. This i
equivalent to what one is really doing in filling out the molecular dynamic
dialog box. For example, the length of the MD trajectory, the dynamics r
time, could be set to 100ps via the script command,

dynamics-run-time 100

Alternatively, one can just accept default values for the relevant HSV’s wh
are just the current values in the dialog box left over from the last time it w
invoked. As with almost any situation in HyperChem, reasonable default
ues are available and are used when you choose not to specify further d

Script Files

Type 1 scripts are normally stored in files with a default file extension of
*.SCR. These files consist of nothing more than a sequence of individual
script commands, stored in an Ascii text file with a file name that has the SCR
file extension. A script is normally executed by opening a *.SCR script file
with the <Script/Open...> menu item.
52 Chapter 6

Introduction

m.

n of
alue
 on

ntrol
em
A Hcl script file is simply a text file and while it is not essential to use the
*.scr extension, that is the useful default extension used by HyperChe

A trivial example of a *.scr file is version.scr, one that contains the
single line,

version ?

This script file, when opened, queries for the Release Number or Versio
HyperChem, in case you are not sure what it is. That is, it requests the v
of the HSV, “version”. The result will be reported to you in a message box
the screen.

CHEM.SCR

When HyperChem is started, one of things it does before handing over co
to you as a user is to execute a default initialization Hcl script. If HyperCh
Type 1 (Hcl) Scripts 53

Examples

 part
n
ou

per-
 a
se

 the

, the

t

itor
 or

ere
per-
 is to
The
finds a script, CHEM.SCR, in its path then it executes that script as a final
of its initialization. If this file does not exist or HyperChem cannot find it i
its path, then no such specialized initialization is performed. This allows y
to set up a script and place it in CHEM.SCR to customize your copy of Hy
Chem right from its instantiation, without ever having to explicitly execute
script. If you have your own customization of HyperChem that you like to u
on a semi-permanent basis, you should place the relevant script into
CHEM.SCR.

Compiled Scripts

A script can be compiled, if desired. The compilation results in a *.ocr file.
Thus, the following script command compiles xxx.scr into xxx.ocr,

compile-script-file xxx.scr xxx.ocr

Compiled scripts can be opened by HyperChem just as text scripts (see
file filter in the <Script/Open...> dialog box).

Recursive Scripts

Scripts files can contain script commands to open other script files. Thus
script file a.scr could contain a script command,

read-script b.scr

When this second script, b.scr, completes, control is returned to the scrip
command in a.scr following the above call to b.scr.

Script Editor

The companion product to HyperChem, ChemPlus, includes a script ed
that makes it easy to create and execute individual Hcl script commands
whole or partial Hcl script files.

Examples

This section begins a description of a number of example Hcl scripts. Th
are a large number of HSV’s and direct script commands contained in Hy
Chem and learning them all is not a simple matter. One of the best ways
study example scripts and ultimately to write a number your own scripts.
54 Chapter 6

Examples

om-
the
 are
ily

s,

fer-

ons.
ed

pir-

d an
lec-
eac-
r
rag-
ow
e set

s will
 the

 the
and
o

 cor-
 can
elec-

l as
and
ving
lect-
examples here will give you some idea of the power of the HyperChem C
mand Language but its real power ultimately comes in conjunction with
control structures that Tcl can add or the GUI that Tk can add. Hcl scripts
rich in chemistry but it is sometimes difficult to get what you want done eas
without the true programming power of variables, do-loops, if-statement
etc.

In addition to this section a good place to start learning Hcl scripts is the
test.scr script that is explained and described in Chapter 10 of the Re
ence manual.

Reactive Collision of Two Molecules

This example illustrates a potential process for studying chemical reacti
HyperChem’s molecular dynamics (MD) calculations use forces comput
by any of the basic computation methods - molecular mechanics, semi-em
ical or ab initio quantum mechanics. When the forces are computed by a
quantum mechanical method, bond breaking is quite straight-forward an
MD trajectory can describe a reactive or non-reactive collision of two mo
ular systems. The actual calculation of a rate constant for the chemical r
tion is much more complicated and involves performing the collision ove
and over again with a Boltzman weighted set of initial conditions and ave
ing over the results. A Tcl script could do this but here we just illustrate h
to set up a simple script so that any two molecules on the screen could b
to collide with each other and you can see what happens. To reiterate, thi
show you only one of the many possible outcomes of collisions between
two molecules. It nevertheless can be very informative.

This script assumes there are two molecules and two molecules only on
screen. A collision is going to be initiated between a moving molecule 1
a stationary molecule 2. Molecule 1’s center of mass is going to be set t
move in the direction of the center of mass of molecule 2.

Assign Target Position

The first thing we are going to do is to make the named selection POINT
respond to molecule 2. POINT is a pre-named selection such that POINT
be referred to by other parts of HyperChem as the center-of-mass of the s
tion. That is POINT can be both a name for a particular selection as wel
the center-of-mass of that selection. We select the atoms of molecule 2
assign them to POINT. We can select all the atoms of one molecule by ha
the selection unit be molecules (menu item <Select/Molecules>) and se
ing any atom of that molecule.
Type 1 (Hcl) Scripts 55

Examples

such
ole-

em
city
ion.
irec-

ting
i-
t is
per-
uld
nd
rac-
 in

ons

on.
ave
 bro-
uch
a-
ior
select-none ; start clean

selection-target molecules ; want to select all of molecule 2

select-atom 1,2 ; select atom 1 of molecule 2 => all atoms

name-selection POINT ; name the selection POINT

set-velocity POINT 0 ; make sure molecule 2 is stationary

select-none ; de-select

Assign Collision Velocities

The next step is to assign the velocities of the atoms of molecule 1 to be
that the center of mass of molecule 1 is aimed at the center of mass of m
cule 2. We do this by selecting all of the atoms of molecule 1 and give th
a velocity in the direction of POINT. The scalar value of the assigned velo
here is 200 Angstroms/picosecond. This is rather a high velocity of collis
The center of mass of this second selection, directed at POINT, is the d
tion of each assigned velocity.

select-atom 1,1 ; select all atoms of molecule 1

set-velocity POINT 200 ; veloc=200 in direction of POINT

select-none ; done

Wave Function Computation Parameters

Prior to initiating the collision we must set up the parameters for the resul
quantum mechanical computations. In this case we use the CNDO sem
empirical method but it might be any semi-empirical or ab initio method. I
appropriate to try to accelerate the convergence and we do not want to
form a configuration interaction calculation since in that case no forces wo
be calculated. We will be looking at a classical MD trajectory for the grou
state potential energy surface for these two molecules. Configuration Inte
tion in HyperChem is for exploring excited states. A convergence of 0.01
usually sufficient and it should definitely converge in less than 100 interati
if it converges at all.

The final setting below is to request a UHF rather than an RHF calculati
This is sometimes a controversial subject but RHF calculations do not h
the correct asymptotic behavior at long distances when bonds are being
ken. UHF calculations sometimes have their own problems but allow a m
more generic approach for arbitrary chemical reactions. The UHF calcul
tions usually allow bond-breaking to lead to the correct open-shell behav
of intermediates and products, as compared to RHF calculations.
56 Chapter 6

Examples

ost
. The

ients
city

e true
brate

n. In
r
 on

ee

cal
le-
ing
not
lecu-
g out
ren-
uct”
rest-

ause
facts
y no

calculation-method=semiempirical ; faster than ab initio

semi-empirical-method=cndo ; why not

accelerate-scf-convergence=true ; fast is good

configuration-interaction=noci ; no gradients with ci

excited-state=false ; could also study lowest state

scf-convergence=0.01 ; 0.1 to 0.0001 ?

max-iterations=100 ; better converge better than this

uhf=true ; essential for bond breaking

The Collision

The last step is to initiate the molecular dynamics trajectory correctly. M
of these parameters are not set below but have been set in the dialog box
important values are the step size and the length of the trajectory. If grad
get very high a smaller step size may be necessary. A larger collision velo
may also require smaller steps. It is essential to set dynamics-restart to b
as this uses the velocities assigned above rather than attempts to equili
the velocities, with random numbers, according to the temperature.

dynamics-restart=true ; use velocities we have

do-molecular-dynamics ; let �er rip

This example can be run any time there are two molecules on the scree
some instances, it may be necessary to set the charge and multiplicity fo
charged or open-shell systems. Try it by placing two methane molecules
the screen and see if you can form H2 + C2H6 in a collision? The example can
be expanded on in a great many ways. For example, one might like to s
molecular orbitals change during the collision.

One of the potential problems in watching molecular dynamics of chemi
reaction is that of the “standard model” of HyperChem which treats a mo
cule as a connected graph. Overlapping spheres is the best way of view
chemical reactions because they display only the position of atoms and
bonds that may no longer exist. Unfortunately, HyperChem uses the mo
lar graph to speed up the overlapping spheres rendering; it avoids workin
the intersection of spheres when there is no “bond”. Thus one may see
dering artifacts sometimes when two atoms are near each other in a “prod
when the reactant molecular graph “says” that they are far apart. An inte
ing script that you might wish to explore would be one that dynamically
recomputes the graph to reflect the changing bonds of the reaction. Bec
of this issue, sometimes one “bonds everything” so that there are no arti
in a spheres rendering; quantum mechanical calculations, of course, pa
attention to “bonds” but only care about the position of atoms. Bonds are
Type 1 (Hcl) Scripts 57

Examples

l cal-

 of

ec-
sim-
ates
 of
res.

s
g
 that

SV
er,

rly
ns
rme-
something to be derived from the results of the such quantum mechanica
culations.

Building and Optimizing C60

The molecule C60 continues to be of great interest to chemists. The power
HyperChem’s model builder is illustrated by its capability for building the
correct 3D structure of the molecule from a simple drawing of its 2D mol
ular graph. This can be accomplished without any need for a script if you
ply draw the molecular graph using a mouse. This example, however, cre
C60 using a script as an illustration of the general scripting capability and
the process that one uses in a script to create arbitrary molecular structu
In combination, for example, with Tcl and a Tk GUI it would certainly be
possible to add to HyperChem, yourself, the template building capabilitie
that are the only building capabilities that many other molecular modelin
programs contain. That is, the HyperChem model builder has a richness
makes possible many other molecule creation procedures.

Setup

The first part of this and any other script should set up the appropriate H
environment for the script. Here, this includes options for the model build
for the rendering and for the optimization that comes later. It is particula
important to note that one should draw with explicit hydrogens (hydroge
are not added unless they are explicitly drawn). This means that for inte
diate structures used to build up to C60, the model builder will not add inap-
propriate intermediate hydrogens to the dangling valencies.

file-needs-saved no ; no user intervention - new

menu-file-new ; clean slate for new

render-method sticks ; use sticks for drawing

calculation-method molecular-mechanics ; for later optimization

molecular-mechanics-method mm+ ; universal method

selection-target atoms ; select individual atoms

show-multiple-bonds yes ; lets see aromatic bonds

allow-ions yes ; valence of 4 for S

explicit-hydrogens yes ; build won�t add wrong hydrogens

multiple-selections yes ; going to select group
58 Chapter 6

Examples

all
nates
the

 atom
rdi-

bond

cule
t in

h

first
ng.

 the
 bot-
he
thm
ome

. The
elec-
Drawing the First Pair of Atoms

To draw a molecule, one uses create-atom to place an atom, of a specified
atomic number, down onto the workspace. This script command places
atoms at the origin and the fact that two atoms may have the same coordi
is not particularly important here as their final positions will be chosen by
model builder, which cares here only about the graph (what is bonded to
what!) not the arbitrary initial coordinates. If the coordinates were to be
important because, say, the model builder was not to be used, then any
could be translated (translate-selection) to some arbitrary Cartesian coo
nates.

Once, for example, the first two atoms are placed onto the workspace, a
is placed between them with the script command, set-bond. The order of the
arguments is atom and molecule of the first atom and then atom and mole
of the second atom. In this case, the two atoms are both numbered 1 bu
molecules 1 and 2. The two atoms are in separate molecules, until the bond is
drawn, because they are not part of the same connected molecular grap
which the bonds define.

;build first bonded pair of atoms

create-atom 6 ; place C at origin

create-atom 6 ; place 2nd C at origin

set-bond 1 1 1 2 a ; create aromatic bond between

menu-build-model-build ; build 3D structure

Finish First Level Pentagon

The following script code then creates the remaining three atoms of the
pentagon, building the structure (applying the model builder) as we go alo
It is not really necessary to apply the model builder at every step. Finally
ring closing bond is applied and the atoms are all colored red. The top and
tom pentagons will be colored red just to distinguish them as we rotate t
final structure. HyperChem generally uses a “select then operate” algori
where you first select a subset of atoms of the molecular system, apply s
operation to this subset, and then de-select or not for the next operation
operation here is one of many possible ones that could be applied to a s
tion. Specifically it is the color-selection operation.

create-atom 6 ; create the remaining atoms

set-bond 2 1 1 2 a
Type 1 (Hcl) Scripts 59

Examples

ord-
menu-build-model-build

create-atom 6

set-bond 3 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 4 1 1 2 a

menu-build-model-build

set-bond 5 1 1 1 a ; set ring-closure bond

menu-build-model-build

select-atom 1 1 ; select each of the five atoms

select-atom 2 1

select-atom 3 1

select-atom 4 1

select-atom 5 1

color-selection red ; color them red

select-none ; de-select everything

Build Remaining Layers

The following code is repetitive and just adds the remaining 55 atoms acc
ing to the correct graph, building as it goes along.

create-atom 6 ; build second tier

set-bond 1 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 2 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 3 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 4 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 5 1 1 2 a

menu-build-model-build

create-atom 6 ; build third tier

set-bond 6 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 6 1 1 2 a

menu-build-model-build
60 Chapter 6

Examples
create-atom 6

set-bond 7 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 7 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 8 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 8 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 9 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 9 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 10 1 1 2 a

menu-build-model-build

create-atom 6

set-bond 10 1 1 2 a

menu-build-model-build

set-bond 11 1 19 1 a

set-bond 12 1 14 1 a

set-bond 13 1 16 1 a

set-bond 15 1 18 1 a

set-bond 17 1 20 1 a

create-atom 6 ; build fourth tier

set-bond 11 1 1 2 a

create-atom 6

set-bond 12 1 1 2 a

create-atom 6

set-bond 13 1 1 2 a

create-atom 6

set-bond 14 1 1 2 a

create-atom 6

set-bond 15 1 1 2 a

create-atom 6

set-bond 16 1 1 2 a

create-atom 6

set-bond 17 1 1 2 a
Type 1 (Hcl) Scripts 61

Examples
create-atom 6

set-bond 18 1 1 2 a

create-atom 6

set-bond 19 1 1 2 a

create-atom 6

set-bond 20 1 1 2 a

set-bond 21 1 22 1 a ; tier of five pentagons

set-bond 23 1 24 1 a

set-bond 25 1 26 1 a

set-bond 27 1 28 1 a

set-bond 29 1 30 1 a

menu-build-model-build

create-atom 6 ; fifth tier

set-bond 21 1 1 2 a

create-atom 6

set-bond 22 1 1 2 a

create-atom 6

set-bond 23 1 1 2 a

create-atom 6

set-bond 24 1 1 2 a

create-atom 6

set-bond 25 1 1 2 a

create-atom 6

set-bond 26 1 1 2 a

create-atom 6

set-bond 27 1 1 2 a

create-atom 6

set-bond 28 1 1 2 a

create-atom 6

set-bond 29 1 1 2 a

create-atom 6

set-bond 30 1 1 2 a

menu-build-model-build

set-bond 32 1 34 1 a

set-bond 33 1 36 1 a

set-bond 35 1 38 1 a

set-bond 37 1 40 1 a

set-bond 31 1 39 1 a

create-atom 6

set-bond 31 1 1 2 a

create-atom 6

set-bond 32 1 1 2 a

create-atom 6
62 Chapter 6

Examples
set-bond 33 1 1 2 a

create-atom 6

set-bond 34 1 1 2 a

create-atom 6

set-bond 35 1 1 2 a

create-atom 6

set-bond 36 1 1 2 a

create-atom 6

set-bond 37 1 1 2 a

create-atom 6

set-bond 38 1 1 2 a

create-atom 6

set-bond 39 1 1 2 a

create-atom 6

set-bond 40 1 1 2 a

menu-build-model-build

set-bond 41 1 42 1 a

set-bond 43 1 44 1 a

set-bond 45 1 46 1 a

set-bond 47 1 48 1 a

set-bond 49 1 50 1 a

create-atom 6

set-bond 41 1 1 2 a

set-bond 49 1 51 1 a

create-atom 6

set-bond 42 1 1 2 a

set-bond 44 1 52 1 a

create-atom 6

set-bond 43 1 1 2 a

set-bond 46 1 53 1 a

create-atom 6

set-bond 45 1 1 2 a

set-bond 48 1 54 1 a

create-atom 6

set-bond 47 1 1 2 a

set-bond 50 1 55 1 a

menu-build-model-build

create-atom 6

set-bond 51 1 1 2 a

create-atom 6

set-bond 52 1 1 2 a

create-atom 6

set-bond 53 1 1 2 a
Type 1 (Hcl) Scripts 63

Examples

 the
truc-

create-atom 6

set-bond 54 1 1 2 a

create-atom 6

set-bond 55 1 1 2 a

menu-build-model-build

set-bond 56 1 57 1 a

set-bond 57 1 58 1 a

set-bond 58 1 59 1 a

set-bond 59 1 60 1 a

set-bond 60 1 56 1 a

menu-build-model-build

Color Bottom and Rotate

We now color the bottom pentagon, switch to a solid rendering and rotate
molecule to visualize the structure. Because Hcl scripts have no control s
tures we have to repeat the rotate-molecules script command to get the effect
we want. A Tcl script would use a do-loop.

select-atom 56 1

select-atom 57 1

select-atom 58 1

select-atom 59 1

select-atom 60 1

color-selection red

select-none

render-method spheres ; easier to see 3D shape

rotate-molecules x 5 ; rotate around horizontal

rotate-molecules x 5 ; rotate by 5 degrees at time

rotate-molecules x 5 ; rotate until see whole

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5
64 Chapter 6

Examples

or
rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

rotate-molecules x 5

Zoom Structure

We now switch back to a sticks structure and zoom in on the molecule f
effect. We see a perspective picture as we zoom.

render-method sticks

align-viewer z ; view molecule along z axis

front-clip 0 ; don�t let it get clipped

show-perspective true ; pretty perspective view

translate-view 0 0 1 ; translate 1 Angstrom in Z

translate-view 0 0 1 ; repeat according to taste

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1

translate-view 0 0 1
Type 1 (Hcl) Scripts 65

Catalog of HSV’s and Direct Script Commands

s
O

 to
g all

and
ble.
translate-view 0 0 1

translate-view 0 0 -30 ; go back where we were

show-perspective false ; turn off for other renderings

Create an SO2 Molecule Inside C60

Next we create an SO2 molecule and place it at the center inside the C60 struc-
ture. We switch back to a solid rendering and cut away the from of C60 so that
we can see the SO2 molecule inside. If the selection unit (target) is molecule
then selecting any atom of a molecule selects the whole molecule. The S2 is
built without affecting the C60 by selecting a subset (SO2) before building.
This performs an incremental build (an important capability of the model
builder) on only the selection (“select and operate”).

selection-target molecules ; select whole molecules

select-atom 1 1 ; select whole C60

color-selection violet ; color violet for variety

select-none ; OK I�m done

create-atom 16 ; create SO2 - Sulfur first

create-atom 8 ; then the Oxygen

set-bond 1 2 1 3 d ; double bonds

create-atom 8

set-bond 1 2 1 3 d

select-atom 1 2 ; select the SO2 for a build

menu-build-model-build ; incremental build

select-none ; have good SO2 now

render-method disks

selection-target atoms

front-clip 54

Optimize SO2 inside Cavity

do-optimization

exit-script

Other scripts can be found on the HyperChem CD-ROM. You may wish
explore them as a CDK learning tool. To complete this chapter, we catalo
Hcl script commands.

Catalog of HSV’s and Direct Script Commands

What follows is an alphabetic listing of all HSV variables and all direct com-
mands. Each entry contains an indication whether it is a variable or comm
and for a variable whether it is a Readonly variable or a Read/Write varia
66 Chapter 6

Catalog of HSV’s and Direct Script Commands

m-
brief
com-

y
ly,

al.

-

-

m.
For variables the next line describes the type of variable it is while for co
mands the argument list is described. The third line of each entry gives a
description of the entry. These entries are the result of running the script
mand, print-variable-list, which is the final arbiter of the complete list of
script commands. The list of menu activations is left off this list since the
can be inferred from HyperChem by just looking at its menus. Alternative
the menu activations are described in the HyperChem Reference Manu

abinitio-buffer-size: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Two electron integral buffer size.

abinitio-calculate-gradient: Variable, Read/Write.
Type: boolean.
Enable Ab Initio gradient calculation (Single Point only).

abinitio-cutoff: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Two electron integral cutoff.

abinitio-d-orbitals: Variable, Read/Write.
Type: boolean.
Either five (False) or six (True).

abinitio-direct-scf: Variable, Read/Write.
Type: boolean.
Enable Ab Initio Direct SCF calculation.

abinitio-f-orbitals: Variable, Read/Write.
Type: boolean.
Either seven (False) or ten (True).

abinitio-integral-format: Variable, Read/Write.
Type: enum(raffenetti, regular).
Either regular or raffenetti.

abinitio-integral-path: Variable, Read/Write.
Type: string.
Path for storing integrals.

abinitio-mo-initial-guess: Variable, Read/Write.
Type: enum(core-hamiltonian, projected-huckel, projected-cndo,pro

jected-indo).
Either core-hamiltonian, projected-huckel, projected-cndo, projected

indo.
abinitio-mp2-correlation-energy: Variable, Read/Write.

Type: boolean.
Enable Ab Initio MP2 correlation energy.

abinitio-mp2-frozen-core: Variable, Read/Write.
Type: boolean.
Enable Ab Initio MP2 frozen core.

abinitio-scf-convergence: Variable, Read/Write.
Type: float in range (0 .. 100).
SCF Convergence for Ab Initio.

abinitio-use-ghost-atoms: Variable, Read/Write.
Type: boolean.
Include or ignore ghost atoms.

accelerate-scf-convergence: Variable, Read/Write.
Type: boolean.
Whether to use DIIS procedure.

add-amino-acid: Command.
Arg list: string.
String-1 gives the name of an amino acid residue to add to the syste
Type 1 (Hcl) Scripts 67

Catalog of HSV’s and Direct Script Commands

 tor-

tor-

d.
add-nucleic-acid: Command.
Arg list: string.
String-1 names the nucleotide to add to the current system.

align-molecule: Command.
Arg list: .
Align the inertial axes of the molecular system.

align-viewer: Command.
Arg list: .
Align the viewer's line-of-sight with the indicated axis or LINE.

allow-ions: Variable, Read/Write.
Type: boolean.
Whether to allow excess valence on atoms.

alpha-orbital-occupancy: Variable, Read/Write.
Type: vector of float.
(i) Number of electrons in the i-th MO.

alpha-scf-eigenvector: Variable, Read/Write.
Type: vector of float-list.
(i) Coefficients for the i-th MO.

amino-alpha-helix: Command.
Arg list: (void).
Subsequent additions of amino acid residues are to use alpha-helix

sions.
amino-beta-sheet: Command.

Arg list: (void).
Subsequent additions of amino acid residues are to use beta-sheet

sions.
amino-isomer: Variable, Read/Write.

Type: enum(l, d).
Whether amino acids are l or d.

amino-omega: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
The Omega amino acid backbone angle.

amino-phi: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
The Phi amino acid backbone angle.

amino-psi: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
The Psi amino acid backbone angle.

animate-vibrations: Variable, Read/Write.
Type: boolean.
Whether or not to animate vibrations.

append-dynamics-average: Command.
Arg list: string.
Add a named selection to dynamics average gathering.

append-dynamics-graph: Command.
Arg list: string.
Add a named selection to dynamics graph display.

append-omsgs-to-file: Command.
Arg list: string.
String-1 gives the name of a file to which o-msgs are to be appende

assign-basisset: Command.
Arg list: string.
Assign a basis set to a selection or system.

atom-basisset: Variable, Read/Write.
Type: array of string.
(iat, imol) The basis set of atom iat in molecule imol.

atom-charge: Variable, Read/Write.
Type: array of float.
68 Chapter 6

Catalog of HSV’s and Direct Script Commands

sis-

mu-
(iat, imol) The charge of atom iat in molecule imol.
atom-color: Variable, Read/Write.

Type: array of .
(iat, imol) The current color of the atom.

atom-count: Variable, Readonly.
Type: vector of integer.
(imol) The number of atoms in molecule imol.

atom-extra-basisset: Variable, Read/Write.
Type: array of string, float.
(iat, imol) The basis set of atom iat in molecule imol.

atom-info: Variable, Readonly.
Type: (unknown).
Funny composite to support backends.

atom-label-text: Variable, Readonly.
Type: array of string.
(iat, imol) RO. The text of the current atom label.

atom-labels: Variable, Read/Write.
Type: enum(None, Symbol, Name, Number, Type, Charge, Mass, Ba

Set, Chirality).
Label for atoms.

atom-mass: Variable, Read/Write.
Type: array of float.
(iat, imol) The mass of atom iat in molecule imol.

atom-name: Variable, Read/Write.
Type: array of string.
(iat, imol) The name of atom iat in molecule imol.

atom-type: Variable, Read/Write.
Type: array of string.
(iat, imol) The type of atom iat in molecule imol.

atomic-number: Variable, Read/Write.
Type: array of integer.
(iat, imol) The atomic number of atom iat in molecule imol.

atomic-symbol: Variable, Readonly.
Type: array of string.
(iat, imol) The element symbol of the atom.

back-clip: Variable, Read/Write.
Type: float.
Set back clipping plane.

backend-active: Variable, Read/Write.
Type: boolean.
Whether current channel is an active backend.

backend-communications: Variable, Read/Write.
Type: enum(Local, Remote).
Whether to compute on local or remote host.

backend-host-name: Variable, Read/Write.
Type: string.
The name of remote host for backend communications.

backend-process-count: Variable, Read/Write.
Type: integer in range (1 .. 32).
The number of processes to run.

backend-user-id: Variable, Read/Write.
Type: string.
The user id to use on the remote host for backend communications.

backend-user-password: Variable, Read/Write.
Type: string.
The password for user id to use on the remote host for backend com

nications.
balls-highlighted: Variable, Read/Write.
Type 1 (Hcl) Scripts 69

Catalog of HSV’s and Direct Script Commands

w,

m-

enu-
Type: boolean.
Balls and Balls-and-Cylinders should be highlighted when shaded.

balls-radius-ratio: Variable, Read/Write.
Type: float in range (0 .. 1).
Size of the Balls relative to the maximum value.

balls-shaded: Variable, Read/Write.
Type: boolean.
Balls and Balls-and-Cylinders should be shaded.

basisset-count: Variable, Readonly.
Type: integer.
Number of coefficients required to describe a molecular orbital.

bend-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

beta-orbital-occupancy: Variable, Read/Write.
Type: vector of float.
(i) Number of electrons in the i-th MO.

beta-scf-eigenvector: Variable, Read/Write.
Type: vector of float-list.
(i) Coefficients for the i-th MO.

bond-color: Variable, Read/Write.
Type: enum(ByElement, Black, Blue, Green, Cyan, Red, Violet, Yello

White).
The color used for drawing atoms and bonds.

bond-spacing-display-ratio: Variable, Read/Write.
Type: float in range (0 .. 1).
Bond spacing display ratio.

builder-enforces-stereo: Variable, Read/Write.
Type: boolean.
Whether the model builder implicitly enforces any existing stereoche

istry.
calculation-method: Variable, Read/Write.

Type: enum(MolecularMechanics, SemiEmpirical, AbInitio).
Whether molecular mechanics, semi-empirical, or ab initio.

cancel-menu: Variable, Read/Write.
Type: boolean.
Whether the cancel menu is up, or the normal one.

cancel-notify: Command.
Arg list: string.
String-1 names a variable to stop watching.

change-stereochem: Command.
Arg list: integer, integer.
Immediately change the stereochemistry about (iat, imol).

change-user-menuitem: Command.
Arg list: integer, string, string.
Change the text and procedure associated with the specified user M

Item.
chirality: Variable, Read/Write.

Type: array of string.
(iat, imol) A, R, S, or ?, for achiral, R, S, or unknown chirality.

ci-criterion: Variable, Read/Write.
Type: enum(Energy, Orbital).
One of: energy, orbital.

ci-excitation-energy: Variable, Read/Write.
Type: float in range (0 .. 10000).
When ci-criterion=energy, maximum excitation energy.

ci-occupied-orbitals: Variable, Read/Write.
Type: integer in range (0 .. 32767).
70 Chapter 6

Catalog of HSV’s and Direct Script Commands

ms.

ms.

ms.

cted
When ci-criterion=orbital, count of occupied orbitals included.
ci-unoccupied-orbitals: Variable, Read/Write.

Type: integer in range (0 .. 32767).
When ci-criterion=orbital, count of unoccupied orbitals included.

clip-cursor: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select Z axis clip cursor tool.

clip-icon-step: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select clip step.

color-element: Command.
Arg list: integer, enum().
Element Int-1 gets color String-2 as its default color.

color-selection: Command.
Arg list: string.
String-1 names a color for the current selection.

compile-script-file: Command.
Arg list: string, string.
Compile file string-1, writing result to string-2

configuration: Variable, Read/Write.
Type: integer.
The current UV configuration of the system.

configuration-interaction: Variable, Read/Write.
Type: enum(NoCI, SinglyExcited, Microstate).
One of: no-ci, singly-excited, microstate.

connectivity-in-pdb-file: Variable, Read/Write.
Type: boolean.
Whether connectivity information is to be included in a PDB file.

constrain-bond-angle: Command.
Arg list: float angle in range (-360 .. 360).
Float-1 gives the angle constraint for the three currently selected ato

constrain-bond-down: Command.
Arg list: integer, integer, integer, integer.
Constrain the bond from (iat1, imol1) to (iat2, imo2) to be down.

constrain-bond-length: Command.
Arg list: float in range (0 .. 100).
Float-1 gives the length constraint for the two currently selected ato

constrain-bond-torsion: Command.
Arg list: float angle in range (-360 .. 360).
Float-1 gives the torsion constraint for the four currently selected ato

constrain-bond-up: Command.
Arg list: integer, integer, integer, integer.
Constrain the bond from (iat1, imol1) to (iat2, imo2) to be up.

constrain-change-stereo: Command.
Arg list: integer, integer.
Constrain atom (iat, imol) to change the current stereochemistry.

constrain-fix-stereo: Command.
Arg list: integer, integer.
Constrain atom (iat, imol) to enforce the current stereochemistry.

constrain-geometry: Command.
Arg list: string.
String-1 describes the geometry constraint around the currently sele

atom.
coordinates: Variable, Read/Write.

Type: array of float, float, float.
(iat, imol) The x, y, and z coordinates of atom iat in molecule imol.

coordination: Variable, Readonly.
Type: array of integer.
Type 1 (Hcl) Scripts 71

Catalog of HSV’s and Direct Script Commands

e

l2).

ons.
(iat, imol) The coordination number for the specified atom.
cpk-max-double-buffer-atoms: Variable, Read/Write.

Type: integer in range (0 .. 2147483647).
Maximum number of double buffered atoms in cpk rendering mode.

create-atom: Command.
Arg list: integer in range (0 .. 103).
Create a new atom at the origin with atomic number nAtno.

current-file-name: Variable, Readonly.
Type: string.
The name of the current file.

custom-title: Variable, Read/Write.
Type: string.
Custom Title string, append string to title.

cutoff-inner-radius: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
The distance (in Angstroms) to begin a switched cutoff.

cutoff-outer-radius: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
The distance (in Angstroms) at which nonbonded interactions becom

zero.
cutoff-type: Variable, Read/Write.

Type: enum(None, Switched, Shifted).
Electrostatic cutoff to apply to molecular mechanics calculations.

cycle-atom-stereo: Command.
Arg list: integer, integer.
Advance the stereo constraint about atom (iat, imol).

cycle-bond-stereo: Command.
Arg list: integer, integer, integer, integer.
Advance the stereo constraint along the bond (iat1, imol1)--(iat2, imo

cylinders-color-by-element: Variable, Read/Write.
Type: boolean.
Color Cylinders using element colors.

cylinders-width-ratio: Variable, Read/Write.
Type: float in range (0 .. 1).
Width of the Cylinders relative to the maximum value.

d-orbitals-on-second-row: Variable, Read/Write.
Type: boolean.
Include D orbitals on second row.

declare-integer: Command.
Arg list: string.
Declare a new integer variable.

declare-string: Command.
Arg list: string.
Declare a new integer variable.

default-element: Variable, Read/Write.
Type: integer in range (0 .. 103).
The atomic number of the default element for drawing operations.

delete-atom: Command.
Arg list: integer, integer.
Delete the specified atom.

delete-file: Command.
Arg list: string.
filename to be deleted.

delete-named-selection: Command.
Arg list: string.
Remove the named selection String-1 from the list of named selecti

delete-selected-atoms: Command.
Arg list: (void).
72 Chapter 6

Catalog of HSV’s and Direct Script Commands

on.
Delete the currently selected atoms.
dipole-moment: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).
Dipole moment.

dipole-moment-components: Variable, Read/Write.
Type: float, float, float.
Dipole moment components.

do-langevin-dynamics: Command.
Arg list: (void).
Perform a Langevin dynamics computation on the system.

do-molecular-dynamics: Command.
Arg list: (void).
Perform a molecular dynamics computation on the system.

do-monte-carlo: Command.
Arg list: (void).
Perform a Monte Carlo computation on the system.

do-optimization: Command.
Arg list: (void).
Perform a structure optimization on the system.

do-qm-calculation: Variable, Read/Write.
Type: boolean.
For single-point QM calculations, whether to re-compute wave functi

do-qm-graph: Variable, Read/Write.
Type: boolean.
For single-point QM calculations, to graph some data.

do-qm-isosurface: Variable, Read/Write.
Type: boolean.
For single-point QM calculations, to generate iso-surface of results.

do-single-point: Command.
Arg list: (void).
Perform a single-point computation on the system.

do-vibrational-analysis: Command.
Arg list: (void).
Perform a vibrational analysis computation on the system.

dot-surface-angle: Variable, Read/Write.
Type: float angle in range (-90 .. 90).
Dot surface angle.

double-buffered-display: Variable, Read/Write.
Type: boolean.
Whether display operations are double-buffered.

dynamics-average-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Computation results from dynamics run.

dynamics-bath-relaxation-time: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Bath relaxation time for dynamics.

dynamics-collection-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Dynamics data collection interval.

dynamics-constant-temp: Variable, Read/Write.
Type: boolean.
Whether to keep temperature fixed at dynamics-simulation-temp.

dynamics-cool-time: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Time taken to change from dynamics-simulation-temp to dynamics-

final-temp.
dynamics-final-temp: Variable, Read/Write.

Type: float in range (0 .. 1e+010).
Type 1 (Hcl) Scripts 73

Catalog of HSV’s and Direct Script Commands

ula-
Temperature to cool back to when annealing.
dynamics-friction-coefficient: Variable, Read/Write.

Type: float in range (0 .. 1000000).
Friction coefficient for Langevin dynamics.

dynamics-heat-time: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Time taken to change from dynamics-starting-temp -> dynamics-sim

tion-temp.
dynamics-info-elapsed-time: Variable, Readonly.

Type: float in range (0 .. 1e+010).
Elapsed time in dynamics run.

dynamics-info-kinetic-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Computation results from dynamics run.

dynamics-info-last-update: Variable, Readonly.
Type: boolean.
Last update from dynamics run.

dynamics-info-potential-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Computation results from dynamics run.

dynamics-info-temperature: Variable, Readonly.
Type: float in range (0 .. 1e+010).
Computation results from dynamics run.

dynamics-info-total-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Computation results from dynamics run.

dynamics-playback: Variable, Read/Write.
Type: enum(none, playback, record).
Playback a recorded dynamics run.

dynamics-playback-end: Variable, Read/Write.
Type: integer in range (0 .. 32767).
End playback of recorded dynamics run.

dynamics-playback-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Dynamics playback interval.

dynamics-playback-start: Variable, Read/Write.
Type: integer in range (0 .. 32767).
Start playback of recorded dynamics run.

dynamics-restart: Variable, Read/Write.
Type: boolean.
Use saved velocities.

dynamics-run-time: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Total integration time at dynamics-simulation-temp.

dynamics-seed: Variable, Read/Write.
Type: integer in range (-2147483648 .. 2147483647).
Seed for dynamics initialization random number generator.

dynamics-simulation-temp: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
High temperature for the dynamics run.

dynamics-snapshot-filename: Variable, Read/Write.
Type: string.
Name file of to store dynamics run.

dynamics-snapshot-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Set recording interval of dynamics run.

dynamics-starting-temp: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
74 Chapter 6

Catalog of HSV’s and Direct Script Commands

er-
Starting temperature for the dynamics run.
dynamics-temp-step: Variable, Read/Write.

Type: float in range (0 .. 1e+010).
Step size (K) by which temperature is changed.

dynamics-time-step: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Size of the step for integration.

error: Variable, Read/Write.
Type: string.
The current error.

errors-are-not-omsgs: Command.
Arg list: (void).
Specifies that error messages are to appear in message boxes.

errors-are-omsgs: Command.
Arg list: (void).
Specifies that error messages should be treated like o-msgs.

estatic-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

excited-state: Variable, Read/Write.
Type: boolean.
False for lowest state, true for next-lowest state.

execute-client: Command.
Arg list: string.
Run a client application.

execute-hyperchem-client: Command.
Arg list: string.
Run a client application. App can reliably connect to instance of Hyp

Chem.
execute-string: Command.

Arg list: string.
Execute the string variable as a script.

exit-script: Command.
Arg list: (void).
Exit the current script.

explicit-hydrogens: Variable, Read/Write.
Type: boolean.
Whether hydrogens are to be drawn explicitly.

export-dipole: Variable, Read/Write.
Type: boolean.
Whether or not to export dipole moment data to .EXT file.

export-ir: Variable, Read/Write.
Type: boolean.
Whether or not to export IR data to .EXT file.

export-orbitals: Variable, Read/Write.
Type: boolean.
Whether or not to export orbital data to .EXT file.

export-property-file: Command.
Arg list: string.
Writes properties to the named file.

export-uv: Variable, Read/Write.
Type: boolean.
Whether or not to export UV data to .EXT file.

factory-settings: Command.
Arg list: (void).
Reset chem to its out-of-the-box state.

file-diff-message: Command.
Arg list: string, string, string, string.
Type 1 (Hcl) Scripts 75

Catalog of HSV’s and Direct Script Commands

ng4.

in-
Compare file1 to file2; if they are the same say string3, else say stri
file-format: Variable, Read/Write.

Type: string.
The molecule file format.

file-needs-saved: Variable, Read/Write.
Type: boolean.
Whether the current system needs to be saved.

front-clip: Variable, Read/Write.
Type: float.
Set front clipping plane.

global-inhibit-redisplay: Variable, Readonly.
Type: boolean.
Whether redisplay of the system is inhibited (readonly)

graph-beta: Variable, Read/Write.
Type: boolean.
If true and UHF, graph beta-spin orbitals instead of alpha.

graph-contour-increment: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
Increment between contour lines.

graph-contour-increment-other: Variable, Read/Write.
Type: boolean.
Whether to use graph-increment-other (true) or use defaults (false).

graph-contour-levels: Variable, Read/Write.
Type: integer in range (1 .. 32767).
The number of contour levels to plot.

graph-contour-start: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
Value for first contour line.

graph-contour-start-other: Variable, Read/Write.
Type: boolean.
Whether to use graph-contour-start (true) or use defaults (false).

graph-data-row: Variable, Readonly.
Type: vector of float-list.
(i) The values on the i-th row of graph data.

graph-data-type: Variable, Read/Write.
Type: enum(electrostatic, charge-density, orbital, orbital-squared, sp

density).
The type of wavefunction data to plot.

graph-horizontal-grid-size: Variable, Read/Write.
Type: integer in range (2 .. 8192).
Number of data grid points for plotting in the horizontal direction.

graph-orbital-offset: Variable, Read/Write.
Type: integer in range (0 .. +Inf).
Display orbital offset.

graph-orbital-selection-type: Variable, Read/Write.
Type: enum(lumo-plus, homo-minus, orbital-number).
Display orbital type.

graph-plane-offset: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
Offset along viewer's Z axis of the plane of the data to plot.

graph-vertical-grid-size: Variable, Read/Write.
Type: integer in range (2 .. 8192).
Number of data grid points for plotting in the vertical direction.

grid-max-value: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
The isosurface maximum grid value.

grid-min-value: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
76 Chapter 6

Catalog of HSV’s and Direct Script Commands

.

ific).

The isosurface minimum grid value.
hbond-energy: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

heat-of-formation: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Heat of formation.

help: Command.
Arg list: string.
Give help on topic String-1.

hide-errors: Variable, Read/Write.
Type: boolean.
Whether to display error messages on the screen (channel specific)

hide-messages: Variable, Read/Write.
Type: boolean.
Whether to display MESSAGE value on the screen.

hide-toolbar: Variable, Read/Write.
Type: boolean.
Command to toggle the toolbar.

hide-warnings: Variable, Read/Write.
Type: boolean.
Whether to display warning messages on the screen (channel spec

huckel-constant: Variable, Read/Write.
Type: float in range (0 .. 10).
Extended Huckel constant.

huckel-scaling-factor: Variable, Read/Write.
Type: float in range (0 .. 100000).
Extended Huckel scaling factor.

huckel-weighted: Variable, Read/Write.
Type: boolean.
Extended Huckel weighting factor.

hydrogens-in-pdb-file: Variable, Read/Write.
Type: boolean.
Should Hydrogens be written into a PDB file?

ignore-script-errors: Variable, Read/Write.
Type: boolean.
Whether script errors should be ignored, otherwise offer to abort on

errors.
image-color: Variable, Read/Write.

Type: boolean.
Save image in color?

image-destination-clipboard: Variable, Read/Write.
Type: boolean.
Save image to the Windows clipboard?

image-destination-file: Variable, Read/Write.
Type: boolean.
Save image to a file?

image-file-bitmap: Variable, Read/Write.
Type: boolean.
Save in bitmap format?

image-file-bitmapRGB: Variable, Read/Write.
Type: boolean.
Save in bitmap-RGB format?

image-file-metafile: Variable, Read/Write.
Type: boolean.
Save in Windows metafile format?

image-include-cursor: Variable, Read/Write.
Type: boolean.
Type 1 (Hcl) Scripts 77

Catalog of HSV’s and Direct Script Commands

tar-

a-
Include cursor in image?
image-source-window: Variable, Read/Write.

Type: enum(TopLevel, Workspace, HyperChem, FullScreen).
Extent of image to capture.

import-dipole: Variable, Read/Write.
Type: boolean.
Whether or not to import dipole moment data from .EXT file.

import-ir: Variable, Read/Write.
Type: boolean.
Whether or not to import IR data from .EXT file.

import-orbitals: Variable, Read/Write.
Type: boolean.
Whether or not to import orbital data from .EXT file.

import-property-file: Command.
Arg list: string.
Reads properties from the named file.

import-uv: Variable, Read/Write.
Type: boolean.
Whether or not to import UV data from .EXT file.

info-access: Variable, Readonly.
Type: string.
(RO) Access (R, W, RW) for info-variable-target.

info-enum-id-of: Variable, Readonly.
Type: string.
(RO) Binary id of info-enum-target value for info-variable-target.

info-enum-list: Variable, Readonly.
Type: string.
(RO) If enumerated type, list of enumerated values for info-variable-

get.
info-factory-setting: Variable, Readonly.

Type: string.
(RO) factory setting value for info-variable-target.

info-id-of: Variable, Readonly.
Type: integer.
(RO) Binary id of info-variable-target.

info-type-of: Variable, Readonly.
Type: string.
(RO) Type of info-variable-target.

info-type-of-element: Variable, Readonly.
Type: string.
(RO) If info-type-of is array or vector, type of elements.

info-variable-target: Variable, Read/Write.
Type: string.
Variable for which info is required.

inhibit-redisplay: Variable, Read/Write.
Type: boolean.
Whether redisplay of the system is inhibited by current channel.

ir-animate-amplitude: Variable, Read/Write.
Type: float in range (0 .. 10).
The distance in angstroms to move the fastest atom during vib anim

tions(0..10)
ir-animate-cycles: Variable, Read/Write.

Type: integer in range (0 .. +Inf).
The number of cycles (length of time) to animate. 0 means forever.

ir-animate-steps: Variable, Read/Write.
Type: integer in range (3 .. +Inf).
The number of steps to use in animating vibrations (3 -- BIG)

ir-band-count: Variable, Read/Write.
78 Chapter 6

Catalog of HSV’s and Direct Script Commands

d-
Type: integer.
Number of ir bands.

ir-frequency: Variable, Read/Write.
Type: vector of float.
(i) Frequency of the i-th IR band.

ir-intensity: Variable, Read/Write.
Type: vector of float.
(i) Intensity of the i-th IR band.

ir-intensity-components: Variable, Read/Write.
Type: vector of float, float, float.
(i) Intensity components (x,y, and z) of the i-th IR band.

ir-normal-mode: Variable, Read/Write.
Type: vector of float-list.
(i) Normal node. This is a vector holding x, y, and z for each atom.

is-extended-hydrogen: Variable, Readonly.
Type: array of boolean.
(iat, imol) RO. Is the atom an extended hydrogen?

is-ring-atom: Variable, Readonly.
Type: array of boolean.
(iat, imol) RO. Is the atom in a ring?

isosurface-grid-step-size: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
The isosurface grid stepsize.

isosurface-hide-molecule: Variable, Read/Write.
Type: boolean.
Show only the isosurfaces.

isosurface-map-function: Variable, Read/Write.
Type: boolean.
Display a mapped function isosurface.

isosurface-map-function-display-legend: Variable, Read/Write.
Type: boolean.
Display the isosurface mapped function range legend.

isosurface-map-function-range: Variable, Read/Write.
Type: float, float.
Set the isosurface mapped function range.

isosurface-mesh-quality: Variable, Read/Write.
Type: enum(coarse, medium, fine).
Use coarse, medium or fine grid settings.

isosurface-render-method: Variable, Read/Write.
Type: enum(wire-mesh, Jorgensen-Salem, lines, flat-surface, shade

surface, Gouraud-shaded-surface, translucent-surface).
The method used to render the isosurfaces.

isosurface-threshold: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
The isosurface threshold value?

isosurface-transparency-level: Variable, Read/Write.
Type: float in range (0 .. 1).
The isosurface level of transparency (0 = opaque, 1 = transparent)

isosurface-x-min: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
The smallest x coordinate of the grid data.

isosurface-x-nodes: Variable, Read/Write.
Type: integer in range (2 .. 128).
The number of isosurface x nodes.

isosurface-y-min: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
The smallest y coordinate of the grid data.

isosurface-y-nodes: Variable, Read/Write.
Type 1 (Hcl) Scripts 79

Catalog of HSV’s and Direct Script Commands

m.
Type: integer in range (2 .. 128).
The number of isosurface y nodes.

isosurface-z-min: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
The smallest z coordinate of the grid data.

isosurface-z-nodes: Variable, Read/Write.
Type: integer in range (2 .. 128).
The number of isosurface z nodes.

keep-atom-charges: Variable, Read/Write.
Type: boolean.
Keep atom charges when switch calculation methods.

load-default-menu: Command.
Arg list: (void).
Load the Hyperchem default menu.

load-user-menu: Command.
Arg list: string.
Load user customized menu.

log-comment: Command.
Arg list: string.
Write String-1 into the current logfile.

max-iterations: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Maximum number of SCF iterations.

mechanics-data: Variable, Readonly.
Type: (unknown).
Funny composite to support backends.

mechanics-dielectric: Variable, Read/Write.
Type: enum(Constant, DistanceDependent), enum(Constant, Dis-

tanceDependent), enum(Script One), enum().
The method for calculating dielectric permittivity.

mechanics-dielectric-scale-factor: Variable, Read/Write.
Type: float, float, float, float.
Constant to multiply distance-dependent dielectric by.

mechanics-electrostatic-scale-factor: Variable, Read/Write.
Type: float, float, float, float.
Scale factor for 1-4 dielectric interactions.

mechanics-info: Variable, Readonly.
Type: (unknown).
Funny composite to support backends.

mechanics-mmp-electrostatics: Variable, Read/Write.
Type: .
The type of electrostatic interaction to use in MM+ calculations.

mechanics-print-level: Variable, Read/Write.
Type: integer in range (0 .. 9).
Print level for molecular mechanics.

mechanics-van-der-waals-scale-factor: Variable, Read/Write.
Type: float, float, float, float.
Scale factor for 1-4 van der Waals interactions.

merge-file: Command.
Arg list: string.
String-1 names the molecule file to be merged with the current syste

message: Variable, Read/Write.
Type: string.
string1 is an output message.

molecular-mechanics-method: Variable, Read/Write.
Type: enum(mm+, amber, bio+, opls).
The type of molecular mechanics method to perform.

molecule-count: Variable, Readonly.
80 Chapter 6

Catalog of HSV’s and Direct Script Commands

-

u-

w,
Type: integer.
The number of molecules in the system.

moments-of-inertia: Variable, Readonly.
Type: boolean.
Return the moments of inertia of selected system.

monte-carlo-cool-steps: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Steps taken to change from dynamics-simulation-temp -> dynamics

final-temp.
monte-carlo-heat-steps: Variable, Read/Write.

Type: float in range (0 .. 1e+010).
Steps taken to change from dynamics-starting-temp -> dynamics-sim

lation-temp.
monte-carlo-info-acceptance-ratio: Variable, Readonly.

Type: float in range (0 .. 1).
Computation result from Monte Carlo run.

monte-carlo-max-delta: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Maximum allowed size of the displacement step in Angstroms.

monte-carlo-run-steps: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Total number of steps at dynamics-simulation-temp.

mouse-mode: Variable, Read/Write.
Type: enum(Drawing, Selecting, Rotating, ZRotating, Translating,

ZTranslating, Zooming, Clipping).
The function of the cursor in the drawing area.

mp2-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
MP2 energy.

multiple-selections: Variable, Read/Write.
Type: boolean.
Allow multiple selections.

multiplicity: Variable, Read/Write.
Type: integer in range (1 .. 6).
Spin multiplicity.

mutate-residue: Command.
Arg list: string.
Change selected residue into String-1.

name-selection: Command.
Arg list: string.
Name the current selection String-1.

named-selection-count: Variable, Readonly.
Type: integer.
The number of named selections.

named-selection-name: Variable, Readonly.
Type: vector of string.
(i) The name of the i-th named selection.

named-selection-value: Variable, Readonly.
Type: vector of float.
(i) The value of the i-th named selection (bond length, angle, etc).

negatives-color: Variable, Read/Write.
Type: enum(ByElement, Black, Blue, Green, Cyan, Red, Violet, Yello

White).
The color of the negatives.

neighbors: Variable, Readonly.
Type: array of (unknown).
(iat, imol) The neighbor list for the specified atom.

no-source-refs-in-errors: Command.
Type 1 (Hcl) Scripts 81

Catalog of HSV’s and Direct Script Commands

y).
Arg list: (void).
Controls presentation of filename, line number in error messages.

non-standard-pdb-names: Variable, Read/Write.
Type: boolean.
If true, then look for left-justified pdb element names .

nonbond-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

notify-on-update: Command.
Arg list: string.
String-1 gives name of variable whose value-changes are desired.

notify-with-text: Variable, Read/Write.
Type: boolean.
For DDE channels only. Are notifications to be text (otherwise binar

nucleic-a-form: Command.
Arg list: (void).
Subsequent additions of nucleotides will use a-form torsion angles.

nucleic-alpha: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA alpha backbone torsion.

nucleic-b-form: Command.
Arg list: (void).
Subsequent additions of nucleotides will use b-form torsion angles.

nucleic-backwards: Variable, Read/Write.
Type: boolean.
Build backward DNA.

nucleic-beta: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA beta backbone torsion.

nucleic-chi: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA chi backbone torsion.

nucleic-delta: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA delta backbone torsion.

nucleic-double-strand: Variable, Read/Write.
Type: boolean.
Build double strand DNA.

nucleic-epsilon: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA epsilon backbone torsion.

nucleic-gamma: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA gamma backbone torsion.

nucleic-sugar-pucker: Variable, Read/Write.
Type: enum(2-endo, 3-endo).
Select sugar pucker of DNA.

nucleic-z-form: Command.
Arg list: (void).
Subsequent additions of nucleotides will use z-form torsion angles.

nucleic-zeta: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA zeta backbone torsion.

omsg-file: Variable, Read/Write.
Type: string.
String is file to append omsgs.

omsgs-not-to-file: Command.
82 Chapter 6

Catalog of HSV’s and Direct Script Commands

ox.

ten.

ton-

w,
Arg list: (void).
Directs that o-msgs are not to be written to a file, but to a messageb

omsgs-to-file: Command.
Arg list: string.
String-1 gives the name of the new file to which o-msgs are to be writ

one-line-arrays: Variable, Read/Write.
Type: boolean.
Whether to emit arrays all on one line.

open-file: Command.
Arg list: string.
String-1 names the molecule file to be opened.

optim-algorithm: Variable, Read/Write.
Type: enum(SteepestDescents, FletcherReeves, PolakRibiere, New

Raphson, EigenvectorFollow).
The algorithm to use for structure optimizations.

optim-converged: Variable, Readonly.
Type: boolean.
Whether optimization has converged.

optim-convergence: Variable, Read/Write.
Type: float in range (0 .. 100).
Optimization gradient convergence.

optim-max-cycles: Variable, Read/Write.
Type: integer in range (1 .. +Inf).
Maximum number of optimization steps.

orbital-count: Variable, Read/Write.
Type: integer.
Number of molecular orbitals available.

parameter-set-changed: Variable, Read/Write.
Type: boolean.
Toggles the state of the backend parameters.

path: Variable, Read/Write.
Type: string.
Current directory.

pause-for: Command.
Arg list: integer in range (0 .. 32767).
HyperChem pauses for Int-1 seconds.

periodic-boundaries: Variable, Read/Write.
Type: boolean.
Whether to use periodic boundary conditions.

periodic-box-size: Variable, Readonly.
Type: (unknown).
Return the size of the periodic box.

pop-no-value: Command.
Arg list: string.
variable: pop stack, don't restore value.

pop-value: Command.
Arg list: string.
variable: Restore pushed value.

positives-color: Variable, Read/Write.
Type: enum(ByElement, Black, Blue, Green, Cyan, Red, Violet, Yello

White).
The color of the positives.

print: Command.
Arg list: (void).
Print to default printer.

print-variable-list: Command.
Arg list: string.
Write a summary of the state variables to file String-1
Type 1 (Hcl) Scripts 83

Catalog of HSV’s and Direct Script Commands

 an o-

k

nd-

.?
printer-background-white: Variable, Read/Write.
Type: boolean.
Force printer background color to white.

push: Command.
Arg list: string.
variable: Push copy of current value onto stack.

quantum-print-level: Variable, Read/Write.
Type: integer in range (0 .. 9).
Print level for quantum mechanics.

quantum-total-charge: Variable, Read/Write.
Type: integer in range (-32768 .. 32767).
The total charge of the quantum mechanical system.

query-response-has-tag: Variable, Read/Write.
Type: boolean.
Do HSV responses have identifying tags?

query-value: Command.
Arg list: .
String-1 names the state variable whose value should be emitted as

msg.
read-binary-script: Command.

Arg list: string.
String-1 names the compiled script file that should be read.

read-script: Command.
Arg list: string.
String-1 names the file that should be read as a command script.

read-tcl-script: Command.
Arg list: string.
String-1 names the file that should be read and executed as a Tcl/T

script.
remove-all-stereo-constraints: Command.

Arg list: (void).
Remove all stereo constraints.

remove-stereo-constraint: Command.
Arg list: integer, integer.
Remove any stereo constraints from atom (iat, imol)

render-method: Variable, Read/Write.
Type: enum(sticks, balls, balls-and-cylinders, spheres, dots, sticks-a

dots).
How the system is to be displayed.

reorder-selections: Variable, Read/Write.
Type: boolean.
Should atoms in selections be reordered to make proper angles, etc

request: Command.
Arg list: string.
Displays String-1 in a modeless dialog until the user click OK.

residue-charge: Variable, Readonly.
Type: array of float.
(ires, imol) The net charge on the residue.

residue-coordinates: Variable, Readonly.
Type: array of float, float, float.
(ires, imol) The center-of-mass for the residue.

residue-count: Variable, Readonly.
Type: vector of integer.
(imol) The number of residues in molecule imol.

residue-label-text: Variable, Readonly.
Type: array of string.
(ires, imol) Text of the label for the residue.

residue-labels: Variable, Read/Write.
84 Chapter 6

Catalog of HSV’s and Direct Script Commands
Type: enum(None, Name, Sequence, NameSequence).
Label for residues.

residue-name: Variable, Readonly.
Type: array of string.
(ires, imol) The name of the residue.

restraint: Command.
Arg list: string, float, float.
(selection-name, value, force-constant)

restraint-tether: Command.
Arg list: .
(selection-name, [POINT|x,y,z], force-constant)

revert-element-colors: Command.
Arg list: (void).
Use default color scheme for displaying atoms.

rms-gradient: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

rotate-molecules: Command.
Arg list: .
rotate-molecules (axis, angle)

rotate-viewer: Command.
Arg list: .
rotate-viewer (axis, angle)

scf-atom-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
SCF atom energy.

scf-binding-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
SCF binding energy.

scf-convergence: Variable, Read/Write.
Type: float in range (0 .. 100).
Convergence required for QM SCF computations.

scf-core-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
SCF core energy.

scf-electronic-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
SCF electronic energy.

scf-orbital-energy: Variable, Read/Write.
Type: vector of float.
(i) Eigenvalues of the Fock matrix.

screen-refresh-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
How frequently to update system on the screen.

script-menu-caption: Variable, Read/Write.
Type: vector of string.
Caption for menu button.

script-menu-checked: Variable, Read/Write.
Type: vector of boolean.
If checked.

script-menu-command: Variable, Read/Write.
Type: vector of string.
Command for menu button.

script-menu-enabled: Variable, Read/Write.
Type: vector of boolean.
If greyed.

script-menu-help-file: Variable, Read/Write.
Type 1 (Hcl) Scripts 85

Catalog of HSV’s and Direct Script Commands

ction.

.

e.

,

,
Type: vector of string.
Help file for menu item.

script-menu-help-id: Variable, Read/Write.
Type: vector of integer.
Context id for help on button.

script-menu-in-use: Variable, Read/Write.
Type: vector of boolean.
Is somebody claiming this menu item?

script-menu-message: Variable, Read/Write.
Type: vector of string.
Status message.

script-refs-in-errors: Variable, Read/Write.
Type: boolean.
Whether to include script file line numbers in errors.

select-atom: Command.
Arg list: integer, integer.
Selects atom int-1 in molecule int2. Honors selection-target.

select-name: Command.
Arg list: string.
String-1 specifies the name of a selection to become the current sele

select-none: Command.
Arg list: (void).
Unselect all atoms.

select-residue: Command.
Arg list: integer, integer.
Selects residue int-1 in molecule int-2, disregarding selection-target

select-sphere: Variable, Read/Write.
Type: boolean.
Whether double-button dragging selects in a sphere or in a rectangl

selected-atom: Variable, Readonly.
Type: vector of integer, integer.
(i) The atom and molecule indices of the i-th selected atom.

selected-atom-count: Variable, Readonly.
Type: integer.
The number of selected atoms.

selection-color: Variable, Read/Write.
Type: enum(ThickLine, Black, Blue, Green, Cyan, Red, Violet, Yellow

White).
How to display the selection.

selection-target: Variable, Read/Write.
Type: enum(Molecules, Residues, Atoms).
The type of target for selection operations.

selection-value: Variable, Readonly.
Type: float.
The value of the current selection (bond length, angle, etc).

semi-empirical-method: Variable, Read/Write.
Type: enum(ExtendedHuckel, CNDO, INDO, MINDO3, MNDO, AM1

PM3, ZINDO1, ZINDOS).
The type of semi-empirical computation to perform.

serial-number: Variable, Readonly.
Type: string.
The serial number of this copy of HyperChem, read-only.

set-atom-charge: Command.
Arg list: float in range (-100 .. 100).
Float-1 provides the charge for the currently selected atom(s).

set-atom-type: Command.
Arg list: string.
String-1 provides the type for the currently selected atom(s).
86 Chapter 6

Catalog of HSV’s and Direct Script Commands
set-bond: Command.
Arg list: integer, integer, integer, integer, enum().
Set bond between (iat1, imol1) and (iat2, imol2) to be bond type.

set-bond-angle: Command.
Arg list: float angle in range (0 .. 180).
Set the bond angle for the current selection.

set-bond-length: Command.
Arg list: float in range (0 .. 3200).
Set the bond length for the current selection.

set-bond-torsion: Command.
Arg list: float angle in range (-360 .. 360).
Set the torsion angle for the current selection.

set-velocity: Command.
Arg list: .
Set the velocity for the selected atoms.

show-axes: Variable, Read/Write.
Type: boolean.
Whether to display inertial axes.

show-dipoles: Variable, Read/Write.
Type: boolean.
Whether to display dipole.

show-hydrogen-bonds: Variable, Read/Write.
Type: boolean.
Whether hydrogen bonds are displayed.

show-hydrogens: Variable, Read/Write.
Type: boolean.
Whether Hydrogens are displayed.

show-isosurface: Variable, Read/Write.
Type: boolean.
Whether an isosurface should be displayed, if one is available.

show-multiple-bonds: Variable, Read/Write.
Type: boolean.
Whether multiple bonds are drawn with multiple lines.

show-periodic-box: Variable, Read/Write.
Type: boolean.
Whether the periodic box is displayed when it exists.

show-perspective: Variable, Read/Write.
Type: boolean.
Whether the system should be displayed in perspective.

show-ribbons: Variable, Read/Write.
Type: boolean.
Whether the system should be displayed with ribbons.

show-stereo: Variable, Read/Write.
Type: boolean.
Whether the system should be displayed as a stereo pair.

show-stereochem-wedges: Variable, Read/Write.
Type: boolean.
Whether stereochemistry constraints get displayed on the screen.

show-vibrational-vectors: Variable, Read/Write.
Type: boolean.
Whether or not to display per-atom vibrational vectors.

solvate-system: Command.
Arg list: (void).
Solvate current system using default box size.

solvate-system-in-this-box: Command.
Arg list: float, float, float.
The three Float args give the size of the box for solvation.
Type 1 (Hcl) Scripts 87

Catalog of HSV’s and Direct Script Commands

e?

get.
source-refs-in-errors: Command.
Arg list: (void).
Controls presentation of filename, line number in error messages.

spheres-highlighted: Variable, Read/Write.
Type: boolean.
CPK overlapping spheres should be highlighted when shaded.

spheres-shaded: Variable, Read/Write.
Type: boolean.
CPK overlapping spheres should be shaded.

start-logging: Command.
Arg list: string, boolean.
Begin append of logging computation results to file String-1.

status-message: Variable, Read/Write.
Type: string.
The text of the last status message.

sticks-width: Variable, Read/Write.
Type: integer in range (0 .. 25).
Sticks rendering width in pixels.

stop-logging: Command.
Arg list: (void).
Don't log computation results any more.

stretch-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

switch-to-user-menu: Command.
Arg list: (void).
Change menu to the user customized menu.

toggle: Command.
Arg list: string.
Invert value of boolean variable.

torsion-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

total-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.

translate-merged-systems: Variable, Read/Write.
Type: boolean.
Should newly merged/pasted molecules be translated off to one sid

translate-selection: Command.
Arg list: float, float, float.
Translate the selection by (dx, dy, dz)

translate-view: Command.
Arg list: float, float, float.
Translate the view by (dx, dy, dz).

translate-whole-molecules: Variable, Read/Write.
Type: boolean.
Select translation of entire molecule.

uhf: Variable, Read/Write.
Type: boolean.
Perform UHF(true) or RHF(false) calculation.

un-select-atom: Command.
Arg list: integer, integer.
Un-selects atom int-1 in molecule int2. Honors selection-target.

un-select-residue: Command.
Arg list: integer, integer.
Un-selects residue int-1 in molecule int-2, disregarding selection-tar
88 Chapter 6

Catalog of HSV’s and Direct Script Commands

.

.

.

le
unconstrain-bond-angle: Command.
Arg list: (void).
Remove any angle constraint for the three currently selected atoms

unconstrain-bond-length: Command.
Arg list: (void).
Remove any constraints on two currently selected atoms.

unconstrain-bond-torsion: Command.
Arg list: (void).
Remove any torsion constraint for the four currently selected atoms

use-fast-translation: Variable, Read/Write.
Type: boolean.
Use bitmap for XY translations.

use-no-restraints: Command.
Arg list: (void).
Ignore all restraints.

use-parameter-set: Command.
Arg list: string.
Use parameter set string1 for current molecular mechanics methods

use-restraint: Command.
Arg list: string, boolean.
(selection-name, if-use)

uv-band-count: Variable, Read/Write.
Type: integer.
The total number of uv bands.

uv-dipole-components: Variable, Read/Write.
Type: vector of float-list.
(i) The components of the dipole moment for the i-th state.

uv-energy: Variable, Read/Write.
Type: vector of float.
(i) The energy of the i-th uv band.

uv-oscillator-strength: Variable, Read/Write.
Type: vector of float.
(i) For the current state.

uv-spin: Variable, Read/Write.
Type: vector of float.
(i) The total spin of the i-th state.

uv-total-dipole: Variable, Read/Write.
Type: vector of float.
(i) The total dipole of the i-th excited state.

uv-transition-dipole: Variable, Read/Write.
Type: vector of float, float, float.
(i) The components of the transition dipole for the i-th state.

variable-changed: Command.
Arg list: string.
Declare that the named variable has changed.

velocities: Variable, Read/Write.
Type: array of float, float, float.
(iat, imol) The x, y, and z velocity components of atom iat in molecu

imol.
velocities-in-hin-file: Variable, Read/Write.

Type: boolean.
Should velocities be written into a hin file?

version: Variable, Readonly.
Type: string.
The version number of HyperChem, read-only.

vibrational-mode: Variable, Read/Write.
Type: integer.
The index of the current normal mode.
Type 1 (Hcl) Scripts 89

Catalog of HSV’s and Direct Script Commands

)

el-

ol-

en.
view-in-hin-file: Variable, Read/Write.
Type: boolean.
Should view be written into a hin file? (useful for comparing hin files

wall-eyed-stereo: Variable, Read/Write.
Type: boolean.
Wall eyed stereo.

warning: Variable, Read/Write.
Type: string.
The current warning.

warning-type: Variable, Read/Write.
Type: enum(none, log, message).
Destination for warning messages.

warnings-are-not-omsgs: Command.
Arg list: (void).
Specifies that warning messages are to appear in message boxes.

warnings-are-omsgs: Command.
Arg list: (void).
Specifies that warning messages should be treated like o-msgs.

window-color: Variable, Read/Write.
Type: enum(Monochrome, Black, Blue, Green, Cyan, Red, Violet, Y

low, White).
The background color for the window.

window-height: Variable, Read/Write.
Type: integer.
Height of the HyperChem window in pixels.

window-width: Variable, Read/Write.
Type: integer.
Width of the HyperChem window in pixels.

write-atom-map: Command.
Arg list: string.
Writes a mapping of backend atom numbers to HyperChem (atom, m

ecule) pairs.
write-file: Command.

Arg list: string.
String-1 names the file into which the current system should be writt

x-y-rotation-cursor: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select X-Y axis rotation cursor tool.

x-y-rotation-icon-step: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select X-Y axis rotation step.

x-y-translation-icon-step: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select X-Y translation step.

z-rotation-cursor: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select Z axis rotation cursor tool.

z-rotation-icon-step: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select Z axis rotation step.

z-translation-cursor: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select Z axis translation cursor tool.

z-translation-icon-step: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select Z translation step.

zindo-1-pi-pi: Variable, Read/Write.
Type: float in range (0 .. 2).
90 Chapter 6

Catalog of HSV’s and Direct Script Commands
Overlap weighting factors.
zindo-1-sigma-sigma: Variable, Read/Write.

Type: float in range (0 .. 2).
Overlap weighting factors.

zindo-s-pi-pi: Variable, Read/Write.
Type: float in range (0 .. 2).
Overlap weighting factors.

zindo-s-sigma-sigma: Variable, Read/Write.
Type: float in range (0 .. 2).
Overlap weighting factors.

zoom: Command.
Arg list: float in range (0.01 .. 50).
Set the magnification.

zoom-cursor: Variable, Read/Write.
Type: float in range (1 .. 1000).
Select zoom cursor tool.

zoom-icon-step: Variable, Read/Write.
Type: float in range (1 .. 1000).
Select zoom step.
Type 1 (Hcl) Scripts 91

Catalog of HSV’s and Direct Script Commands
92 Chapter 6

ears

y
ctly
ple,

 the

ipt
t

nds

s

ite
kly
 One
er-
etely
tly
rfac-
or-
nt to
Chapter 7

Type 2 (Tcl/Tk) Scripts

Introduction

This chapter describes a new scripting language for HyperChem that app
for the first time in Release 5.0. This language is called the Tool Command
Language or just Tcl (“tickle”) for short. Tcl was developed by Professor
John Ousterhout and his students at the University of California, Berkele
and placed in the public domain. Hypercube has build the language dire
into the HyperChem product. Tcl is a general purpose, but relatively sim
interpreted scripting language. It is embeddable. That is, one can extend the
core Tcl language with additional commands; Hypercube has imbedded
full HyperChem Command Language (Hcl) into Tcl. This makes it an
extremely powerful language for molecular modeling. A HyperChem scr
can now be made to do almost anything you wish with a relative modes
amount of programming.

Since Tcl is imbeddable, it commonly comes with an extra set of comma
that allow it to be used for building graphical user interfaces (GUI’s). The
extra module is called the Toolkit (Tk) and the combination is called Tcl/Tk.
Within HyperChem it might be called Tcl/Tk/Hcl but we simply refer to it a
Tcl/Tk (or just Tcl when we are not concerned with graphical elements).

Because the Tcl/Tk/Hcl combination is so powerful it is now possible to wr
whole graphical applications as simple scripts. They can be written quic
and they can be debugged quickly since Tcl is an interpreted language.
might first think that a scripting language is just a way of customizing Hyp
Chem but there are many situations where Tcl can be used to write compl
new applications, reusing whatever functionality HyperChem convenien
can provide. In other situations Tcl is a convenient glue language for inte
ing HyperChem to your own applications, possibly written in C, C++, or F
tran. HyperChem contains many capabilities that you do not need or wa
replicate, but can just use - via this new scripting capability.
93

Elements of Tcl

ten-
nce
less,
u

n-

sub-
ide

t,
f the

s-
 Tcl
Elements of Tcl

This manual cannot be a tutorial or reference for Tcl! The language is ex
sive and competent Tcl programmers must obtain the appropriate refere
books and materials as with any other programming language. Neverthe
with a few ideas described here and the examples that are provided, yo
should be able to write your first Tcl/Tk program and can begin to extend
HyperChem, in some useful way, for your own purposes. Appendix B co
tains a very brief outline of the Tcl commands.

The obvious way to start learning the language is through books on the
ject or through user groups and other material on the Internet and World W
Web.

Books

The obvious book to use is the one by Ousterhout himself. It is the oldes
however, and may not be up to date compared with the latest releases o
software.

• John K. Ousterhout, Tcl and the Tk Toolkit, 1994, Addison-Wesley,
Reading, Mass., ISBN 0-201-6337-X.

• Brent Welch, Practical Programming in Tcl and Tk, Prentice Hall, 1994.

• Eric F. Johnson, Graphical Applications with Tcl & Tk, 1996, M&T
Books, New York, N.Y., ISBN 1-55851-471-6.

Internet

Tcl resources are also readily available on the internet. The Usenet new
group comp.lang.tcl may be useful to you. Some of the WWW sites where
resources are available are:

• http://www.sunlabs.com:80/research/tcl/

• http://www.sco.com/Technology/tcl/Tcl.html

• http://www.elf.org/tcltk-man-html/contents.html
94 Chapter 7

Elements of Tcl

amil-
nd
y
to be
e of

m-

he

r

one

ical

ent

rith-

What is Tcl?

The Tcl language is an interpreted scripting language that, after you are f
iar with it, is really quite simple and easy to use. However, to chemists a
those with limited programming experience outside C and Fortran, it ma
seem somewhat strange to begin with. The language may seem to you
very oriented toward strings rather than numbers, but this is perhaps on
its strengths.

Commands and Arguments

Tcl scripts (*.TCL) consist of a sequence of Tcl commands. Each Tcl co
mand consists of the name of the command followed by its arguments:

command <argument1> <argument2> ...

Every command returns a string. For example, the command,

incr $x 3

increments the value of x by three and returns the string corresponding to t
new value..

Variables and Values

Tcl allows you to store values in variables and use values in commands. Fo
example, the command,

set x 3.5

stores the value 3.5 in the variable x. The value of x is the string, “3.5”,
obtained by using the syntax, $x. To perform arithmetic like operations,
must use a command, expr, that concatenates its arguments into a single
string, evaluates it as an arithmetic expression, and converts the numer
result back into a string to return it. Thus,

expr $x * 3

returns the string, “10.5”.

Command Substitution

This allows you to use the result of one command (a string) as an argum
in another command. Thus,

set y [expr $x + 0.5]

is the way to set y to the value of 4.0, or in general the way to perform a
metic. The square brackets invoke command substitution, i.e. everything
Type 2 (Tcl/Tk) Scripts 95

Elements of Tcl

 result

that
am-
 the
e on
een

ing a
e a

s,
d by
inside the square brackets is evaluated as a separate Tcl script and the
of the script is substituted in place of the bracketed command.

Procedures and Control Structures

It is possible to write Procedures in Tcl. For example, a procedure called
power which when passed x and n computes xn is as follows:

proc power {x n} {

set result 1

while {$n > 0} {

set result [expr $result * x]

set n [expr $n - 1]

}

return $result

}

The braces, { }, are like the double quotes that you place around words
have spaces in them to make them into single words - “two words”, for ex
ple. Braces nest, i.e. the last argument of the proc command starts after
open brace on the first line and contains everything up to the close brac
the last line. No substitutions occur within braces - all the characters betw
the two braces are passed verbatim to proc as its third argument.

Tk

The Tk commands that are added to Tcl have to do with creating and us
set of widgets that appear in a window that appears whenever you invok
Tcl script (unless you place the Tcl command, TclOnly, at the start of the
script). The widgets include Labels, Text Boxes, Buttons, Menus, Frame
Scales, Radio Buttons, Check Boxes, List Boxes, etc. A widget is create
a command as follows:

<widget-type> <widget-name> <argument1> ...

The widget name traditionally starts with a “dot”. For
example, a button is created as follows:

button .b -text �Push Me� -command { <action> }

This button with the text “Push Me” on it will appear in the GUI and will
cause the Tcl command <action> to be executed when it is pushed.
96 Chapter 7

Hcl Embedding

ets.

 the

ript
ese

,

tiva-
ead
a
turn
m-
te

ld be
A necessary Tk command in a Tcl script is the one which lays out the widg
This pack command,

pack .b

lays out each of its widget arguments in the window, in the order in which
arguments are named. By default a vertical ordering is used.

Hcl Embedding

Finally, Type 2 or Tcl/Tk scripts can all execute any of the HyperChem sc
commands in the HyperChem Script language (Hcl). Within a Tcl script th
Hcl commands are divided into two types:

• Executable command - hcExec

• HSV Query - hcQuery

hcExec

The Tcl command for executing a Hcl command is hcExec. For example

hcExec “do-molecular-dynamics”

hcExec “window-color green”

hcExec “menu-file-open”

hcExec “query-value window-color”

This command can be used to execute any Hcl script, including menu ac
tions, direct commands, and any HSV read or write. However, an HSV r
such as, “query-value window-color”, will place the return message into
HyperChem dialog on the screen as if it was a normal Hcl script and not re
anything to the Tcl script. The string that is returned from any hcExec co
mand is always the empty string, “”. If one wants a Tcl script to manipula
and use HSV results from HyperChem then the hcQuery command shou
used.

hcQuery

The Tcl command for querying HyperChem for the value of an HSV is
hcQuery. For example,

set x [hcQuery window-color]
Type 2 (Tcl/Tk) Scripts 97

Examples

al
lue,

For

r
n pro-
der-
y, if
n
g the

pt is
am-
hem

e,

cl
ue of
or

set x [hcQuery �window-color�]

The quotes are optional in this context. The hcQuery command is a norm
Tcl call and returns a string as it should. Thus, if one queries an integer va
a string is returned that represents the integer; everything is consistent.
example, if the number of atoms in molecule 3 is requested,

set number_atoms [hcQuery �atom-count 3�]

then this value can be later used as in the following:

set twice_number_atoms [expr $number_atoms * 2]

Examples

While we have already seen a couple of very simple Tcl scripts in earlie
chapters, this section describes three examples to help you get started i
gramming Tcl/Tk. The best way to learn the language is to use it. After un
standing these examples, you should try a few scripts yourself. Obviousl
you are to become relatively expert in this subject you will need to obtai
some books on Tcl or get assistance through the Internet in understandin
full syntax and semantics of the language.

Calculating the Number of Atoms

You have seen in earlier chapters some simple TclOnly scripts. This scri
our first example of a Tcl/Tk script that uses Tk to generate a GUI. The ex
ple is very simple and is used to show the number of atoms in the HyperC
workspace. The code is very short,

entry .en -textvariable natoms -width 20

button .b -text "Calculate Atoms" -width 20 -command {

set natoms [hcQuery "atom-count"]

}

pack .b .en

This script has a GUI with two widgets. The first is a text entry widget,
referred to in Tcl/Tk as an entry. It can be used to enter text or, as in this cas
display text. We are going to use it to display the number of atoms in the
HyperChem workspace. The text in an entry widget can be bound to a T
variable such that the text that appears always represent the current val
98 Chapter 7

Examples

le

n the

hem

ule
 will

t, the

win-
is is
 is

s:

en
e
the variable. This is what we have done here; we have bound the variab
natoms to the entry widget.

The next widget is just a button widget as we have discussed above. Whe
button is pushed, it executes the Tcl command,

set natoms [hcQuery atom-count]

which assigns a value to natoms that is the result of the query to HyperC
for the value of the HSV, atom-count (the elimination of quotation marks
around atom-count is deliberate to show that they are optional). Now, atom-
count is a vector and since we have left off the index describing the molec
number, i.e. the specific component of the vector, all vector components
be returned. If there are two molecules in the workspace, we will get two
components returned, etc. Because natoms is bound to the entry widge
value returned from pushing the button will appear in the entry widget.

Finally, the two widgets must be packed, i.e. they must be laid out on the
dow. The packing mentions the button first and then the entry so that th
the order in which they appear in the window. The default layout scheme
to have them arranged vertically. The result of pushing the button is thu

The title at the top of the Tcl/Tk window is the title of the script that has be
executed. Only one molecule is present so only the first component of th
vector is returned. If the Hcl script command, query-response-has-tag false,
Type 2 (Tcl/Tk) Scripts 99

Examples

 the

and

any
yper-
e
ese

 This
em
cl

 the

he
crib-
had been executed in the Tcl script prior to the query for atom-count, then
Tcl/Tk entry in the window would only show “8” as the tag, atom-count(1)=,
would have been eliminated.

To elaborate on this kind of script, you simply need to add more widgets
perform more complicated actions when GUI elements like buttons are
pressed.

Calculating a Dipole Moment

This example Tcl/Tk script can be used to calculate a dipole moment for
situation where there are atomic charges. The script is available on the H
Chem CD-ROM as dipole.tcl. The script makes the assumption that th
dipole moment can be calculated from the partial atomic charges only. Th
are the charges you see when you ask for charge labels in HyperChem.
script would perhaps be useful for molecular mechanics where HyperCh
currently does not calculate a dipole moment. If one uses the following T
script to calculate a dipole moment from the Amber template charges of
glycine dipeptide zwitterion, one gets,

The Tcl script for this calculation will now be described. The first part of t
script is associated with setting up the eight label widgets for the text des
ing the four values and for the four values themselves.
100 Chapter 7

Examples

rom
The
n
bing

 the
in-
-

Labels

We are going to use labels to describe everything in this window apart f
the button. The labels need to be laid out both horizontally and vertically.
easiest way to do this is to place labels horizontally into a frame and the
arrange the frames vertically. We use a simple flat label for the text descri
which dipole quantity we are talking about and a label with a relief ridge
around it for the showing the value. Thus, the first frame is just:

frame .f1

label .f1.l1 -text "x component" -width 20

label .f1.l2 -textvariable xdipole -width 20 -relief ridge

pack .f1.l1 .f1.l2 -side left

The label .l1, for example, is a component of the frame .f1 as indicated by
notation .f1.l1. The packing is done horizontally starting at the left of the w
dow. This first frame is for the variable that we have called xdipole, the x
component of the dipole moment. The other three frames are identical:

frame .f2

label .f2.l1 -text "y component" -width 20

label .f2.l2 -textvariable ydipole -width 20 -relief ridge

pack .f2.l1 .f2.l2 -side left

frame .f3

label .f3.l1 -text "z component" -width 20

label .f3.l2 -textvariable zdipole -width 20 -relief ridge

pack .f3.l1 .f3.l2 -side left

frame .f4

label .f4.l1 -text "total" -width 20

label .f4.l2 -textvariable totdipole -width 20 -relief
ridge

pack .f4.l1 .f4.l2 -side left
Type 2 (Tcl/Tk) Scripts 101

Examples

ly
re
en

n the
een

 The
 we
Tcl
t we
unt

 we
e 1.
ent
The

each
 the
-

 three
 sz,

at

uch
ng
Finally, we pack the four frames from top to bottom. We will use a slight
modified call to pack here, called the “configure” option which allows mo
formatting which, in this case, we use to add a little more padding betwe
the frames.

pack configure .f1 .f2 .f3 .f4 -pady 10

Button

The next part of the code describes the button and the action taken whe
button is pressed. The button is called .b and the action is everything betw
the opening brace on the first line and the closing brace on the last line.
first thing that is done is to execute a Hcl command to see that the value
want comes back without a tag that would interfere with its direct use in
commands. We then initialize the component values of the dipole momen
are going to calculate, and initialize the loop counter i. We then get the co
of the number of atoms in molecule 1 for the loop over atoms. The script
are using here is limited to calculating only the dipole moment of molecul
It is an exercise for the reader to extend this to calculate the dipole mom
of the whole molecular system when it has more than one molecule in it.
loop is then entered.

button .b -text "Calculate Dipole Moment" -command {

hcExec "query-response-has-tag false"

set xdipole 0

set ydipole 0

set zdipole 0

set i 0

set natoms [hcQuery "atom-count 1"]

while { $i <$natoms } {

incr i 1

The principal task inside the loop is to get the coordinates and charge of
atom and to multiple them together, accumulating them as we go through
loop. The charge is straight-forward as the first line below indicates. How
ever, the coordinates of an atom come back as a string representing the
x,y,z components separated by commas. This string, referred to here as
must be parsed to extract the individual components which are placed in
arrays x, y, and z. The parsing is accomplished with string commands th
extract the length of a string (string length), look for particular substrings s
as “,” starting at the beginning of the string (string first), extract a substri
102 Chapter 7

Examples

ng

er
ed.

out of a string (string range), search a string from the end to the beginni
looking for a substring (string last), or trim leading blanks off of a string
(string trimleft).

set charge($i) [hcQuery "atom-charge($i,1)"]

set sz [hcQuery "coordinates($i,1)"]

set sz_length [string length $sz]

set comma1 [string first "," $sz]

set x($i) [string range $sz 0 [expr $comma1 - 1]]

set x($i) [string trimleft $x($i)]

set comma2 [string last "," $sz]

set y($i) [string range $sz [expr $comma1 + 1] [expr $comma2 - 1]]

set y($i) [string trimleft $y($i)]

set z($i) [string range $sz [expr $comma2 + 1] $sz_length]

set z($i) [string trimleft $z($i)]

This parsing may seem a bit difficult but this is about the worst that it ev
gets. Finally, the charges and coordinates are multiplied and accumulat

set xdipole [expr $xdipole + $charge($i) * $x($i)]

set ydipole [expr $ydipole + $charge($i) * $y($i)]

set zdipole [expr $zdipole + $charge($i) * $z($i)]

}

Once outside the loop, the dipole moment components are converted to
Debyes and then the total is computed from the components.

set factor 4.8033

set xdipole [expr $xdipole * $factor]

set ydipole [expr $ydipole * $factor]

set zdipole [expr $zdipole * $factor]
Type 2 (Tcl/Tk) Scripts 103

Examples

ts
set totdipole [expr $xdipole * $xdipole]

set totdipole [expr $totdipole + $ydipole * $ydipole]

set totdipole [expr $totdipole + $zdipole * $zdipole]

set totdipole [expr sqrt($totdipole)]

The last thing is to end the button code and to pack the button below the
labels.

}

pack .b

This completes the calculation of the dipole moment. Additional Tcl scrip
are available from the HyperChem CD-ROM.
104 Chapter 7

n

’s

I).

that
cy on
PI
er

ams.
e
face

on-
DE
ith a
K
l or
Chapter 8

DDE Interface to HyperChem

Introduction

This chapter describes the basics of a lower-level Dynamic Data Exchange
(DDE) interface to HyperChem and illustrates it with interactions betwee
Microsoft Word or Microsoft Excel and HyperChem.

DDE versus HAPI

The DDE interface is referred to here as lower-level because Hypercube
new CDK has introduced a higher-level interface that sits on top of DDE and
is referred to as the HyperChem Application Programming Interface (HAP
The HAPI way to interface programs to HyperChem is fully described in
Chapter 11. One point about making HAPI calls rather than DDE calls is
it has abstracted away from any machine or operating system dependen
DDE and can be used in a UNIX environment, etc. Any investment in HA
is preserved since HAPI will be re-implemented by Hypercube if new low
levels of interprocess and interprocessor messaging replaces DDE.

Use of DDE in Windows Applications

The DDE interface is more strictly operating system dependent than it really
is very low-level. We will illustrate it here with a word processor and a
spreadsheet. The next chapter illustrates its use within Visual Basic progr
These DDE interfaces are actually relatively high-level interfaces and ar
available for multiple word processors and spreadsheets. The DDE inter
is very standard for Windows programs and many manufacturers have
adopted it. It is almost non-existent outside the Microsoft Windows envir
ment, however. Nevertheless, almost any Windows program will have a D
interface and HyperChem can have conversations and exchange data w
large number of other standard Windows programs. We illustrate the CD
technology using DDE interactions between HyperChem and Word, Exce
105

Basic Properties of DDE

 not
oces-

-
ions
ht
LE

 of

n in
 by
 client
 inter-
ices.
ices

r

ot be
r-
 in

he
con-
 link

rver
are

 mem-
s sent
Visual Basic, because these are very prominent programs of their class
because identical interfaces could not be demonstrated for other word pr
sors, spreadsheets, etc.

There are indications that Microsoft might eventually replace DDE with
something referred to as OLE Automation. Essentially identical consider
ations would really apply to this new approach compared with the discuss
given below for DDE. Nevertheless, a newer version of HyperChem mig
some day be needed to replace HyperChem’s current use of DDE with O
Automation. There are no indications that Microsoft will abandon its use
DDE anytime in the near future.

Basic Properties of DDE

Dynamic Data Exchange is a mechanism for interprocess communicatio
Windows and NT. Two separate programs carry on a DDE conversation
sending messages to each other. The two programs are referred to as a
and a server. A DDE server generally has data or services that may be of
est to another program. A DDE client wishes to obtain such data or serv
In our context, HyperChem is a DDE Server and makes its data and serv
available to other programs. A client such as Microsoft Word or Excel, o
your program, initiates a communication with the HyperChem Server,
exchanges data with it, and sends it messages to control its actions.

Two programs that engage in DDE conversations with each other need n
specifically coded to work with each other. A DDE Server, such as Hype
Chem, will publicly define its messaging protocol so that all clients know
advance how to obtain services from the server.

A protocol begins with a server defining the name of its application, a topic
for the conversation, and an item that defines the exchange. In most cases t
item is a piece of data to be read from the server.The client initiates the
versation by using the application and topic to establish a communication
In our case, the application is HyperChem, the topic is always System, and the
item is the name of an HSV. In addition, commands can be sent to the se
and this is the way menu activations, direct commands and HSV writes
performed.

DDE Message Types

Each DDE interaction or message passed between client and server is a
ber of a small number of types. The relevant message type for message
from your client program to the HyperChem server are as follows:
106 Chapter 8

DDE Interface to Microsoft Word

plica-
”

piece
es-

se
lar

 item
r”,

tem.
nk

n the

DE
a doc-

bout
o per-

a-
-

DDE_INITIATE

This message, broadcast by a client, requests a conversation with an ap
tion on a topic. Hyperchem will respond if the application is “HyperChem
and the topic is “System”.

DDE_ EXECUTE

This is the message sent by a client to HyperChem to have it execute a
of text corresponding to a script command. Thus the content of such a m
sage might be, “window-color green” or “do-molecular-dynamics” to cau
the background HyperChem window to turn green or to initiate a molecu
dynamics trajectory.

DDE_ REQUEST

This message type is the traditional client request for a piece of data. The
named in the request is the data being requested, such as “window-colo
“scf-binding-energy”, etc.

DDE_ ADVISE

This message type is sent when the client is requesting a hot link for an i
This means that the server will return an HSV automatically on the hot li
whenever the data representing the HSV changes within HyperChem.

These ideas can be illustrate with simple Excel and Word macros or, as i
next chapter, by simple Visual Basic Programs.

DDE Interface to Microsoft Word

Microsoft Word and other Windows word processing programs can talk D
to other Windows programs. These conversations can be used to make
ument come to life with illustrations, etc. For example, a tutorial on some
aspect of chemistry could be written in Microsoft Word. The manuscript
could contain buttons which the reader could push as they were reading a
a topic. These would cause a HyperChem window on the same screen t
form calculations on, or illustrations of, the molecular systems being
described in the manuscript.

In this and following sections we will describe the topic of DDE communic
tion with a very trivial illustration that just changes the color of the Hyper
DDE Interface to HyperChem 107

DDE Interface to Microsoft Word

vail-
SV
 this
ore

s.

.

 on
s.
ord
plate

ail-
Chem screen. This example has very little chemical meaning but it is visual
and easily seen when you try it. It is characteristic of hundreds of other a
able HSV’s that do have chemical meaning and it is an example of an H
that is both readable and writable. You should be able to extrapolate from
trivial example, that illustrates the basic idea, to examples that perform m
meaningful chemistry in line with your own teaching or research interest

Red and Green Example

The following screen shows a Microsoft Word document.

1. Bring up a copy of Microsoft Word and type a few lines of text into it

.

What we are going to do is add two buttons to the text that you can click
to effect actions in HyperChem. Let us first of all create two Word Macro
Word comes with a dialect of Word Basic that you can use to customize W
and write macros. These macros are then associated with a particular tem
file (*.dot). When that template is in use, these macros are available.

2. Select the <Tools/Macro...> menu item and create a macro with the
name, RedMacro. That is, type RedMacro in the text box, “Macro
Name”, and choose a convenient template file to use for “Macros Av
able In:”, and then push the “Create” button.

3. Add the following Word Basic code to create the macro,

Channel = DDEInitiate(�HyperChem�, �System�)
108 Chapter 8

DDE Interface to Microsoft Word

er-
ge to
om-

ers
 it,

g
DDEExecute Channel, �[window-color red]�

DDETerminate(Channel)

You should see a screen such as the following.

The macro code simply initiates communication with the application, Hyp
Chem, on the topic of System and then sends a DDE_EXECUTE messa
HyperChem containing the text that corresponds to a HyperChem script c
mand, which here sets the background window color to red.

Next you need to implement something in the Word document that trigg
the Macro. Assuming the text cursor in the document is where you want

4. Select the menu item <Insert/Field...> to bring up the following dialo
box.
DDE Interface to HyperChem 109

DDE Interface to Microsoft Word

t-
u
5. Select the “Field Name” corresponding to MacroButton as shown and
then type arguments RedMacro and some arbitrary text, such as RED,
into the bottom text entry box, as shown, prior to hitting OK.

6. Repeat the whole process for a “Green button”.

You should now see something resembling the following.

If you now bring up HyperChem and double click on either of the two “bu
tons”, i.e. the text RED or the text GREEN inside the Word document yo
will see these color changes in HyperChem.
110 Chapter 8

DDE Interface to Microsoft Word

 get.
d. A
pa-
ted

ment

ub-
-

Extended Example

The first example of Word Basic above was about as simple as one can
Word Basic has more programming capability than that example showe
slightly more elaborate example can show some of this programming ca
bility. The following five macros that we are about to describe were genera
exactly as above and correspond to the large bold-faced type of the docu
shown below:

The five macros used here are:

ActivateHC

 Sub MAIN

 If (AppIsRunning("HyperChem") = 0) Then

 LineDown

 Insert "Starting HyperChem ..." + Chr$(13)

 Shell "c:\hyper\chem.exe", 0

 LineUp

 EndIf

 End Sub

Each of these macros has a MAIN subroutine. You may use additional s
routines below, or above, the MAIN subroutine. This macro starts Hyper
Chem on the assumption that it is in the directory c:\hyper. Your copy
DDE Interface to HyperChem 111

DDE Interface to Microsoft Word

rrent

nel in

min-
tes
may not be in this same location. The Insert command puts text at the cu
cursor and LineUp and LineDown move the cursor.

ConnectHC:

 Sub MAIN

 channel = DDEInitiate("HyperChem", "System")

 If (channel <> 0) Then

 c$ = Str$(channel)

 SetDocumentVar "channel", c$

 LineDown

 Insert "Document <-> HyperChem connection is ready ..."

 Else

 LineDown

 Insert "Cannot connect to HyperChem !!!"

 EndIf

 End Sub

The above macro starts HyperChem and stores the communication chan
a variable that can be accessed by other macros.

ExecuteCmd

 Sub MAIN

 c$ = GetDocumentVar$("channel")

 channel = Val(c$)

 name$="c:\hyper\c60.hin"

 AppMaximize "HyperChem", 1

 DDEExecute channel, "open-file " + name$

 DDEExecute channel, "align-viewer z"

 DDEExecute channel, "align-molecule primary, x, tertiary, z"

 DDEExecute channel, "menu-display-scale-to-fit"

 DDEExecute channel, "zoom 1.4"

 DDEExecute channel, "menu-edit-copy-image"

 LineDown

 EditPaste

 End Sub

The above macro is an example of one that opens a file containing Buck
sterfullerene (C60), manipulates it in HyperChem and then copies and pas
it into the document.

GetData

Sub MAIN

 c$ = GetDocumentVar$("channel")
112 Chapter 8

DDE Interface to Microsoft Excel

 vec-
ol-
he

ot
e, you
 you
ou

 DOT

ilities
les

hat

s-

archi-
’s
 on

nced
ddi-
 channel = Val(c$)

 atom_count$ = DDERequest$(channel, "atom-count")

 atomic_symbol$=DDERequest$(channel, "atomic-symbol")

 LineDown

 Insert atom_count$

 Insert atomic_symbol$

 End Sub

The above macro first retrieves the text representation of the HyperChem
tor variable, atom-count, which represents the number of atoms in each m
ecule. The second query retrieves the atomic symbols for the atoms in t
workspace (C for Carbon, in this case).

DisconnectHC

 Sub MAIN

 c$ = GetDocumentVar$("channel")

 channel = Val(c$)

 DDETerminate channel

 End Sub

This last macro terminates the connection to HyperChem.

The macros above are stored as part of a Microsoft Word TEMPLATE, n
as a part of the document. So, as long as you are using the same templat
do not need to worry about macros: they are always in place. However, if
move your document to another machine, or if you want to distribute it, y
must remember to move the template also. You may save a template in a
file of Microsoft Word.

Install the macros and try them.

DDE Interface to Microsoft Excel

Microsoft Excel is an example of a spreadsheet that has extensive capab
for DDE conversations with HyperChem. You can, for example, set up tab
of molecules and automate the computation of molecular properties so t
they show up in tables within the spreadsheet. The capability for using a
spreadsheet in conjunction with HyperChem will only be very briefly be illu
trated here, as another example of the richness of the CDK and the open
tecture of HyperChem. This capability has been there since HyperChem
inception and has been fairly commonly exploited so it will not be dwelled
here.

With Release 5 and the CDK, the spreadsheet capability has been enha
because of the addition of enhanced scripting, i.e. now Tcl/Tk scripts in a
DDE Interface to HyperChem 113

DDE Interface to Microsoft Excel

el
 pre-

re

hers
ility

hem.

he
vial

-
d

Hcl

lter-
tion to Hcl scripts as with earlier versions of HyperChem. However, Exc
macros have considerable programming and GUI capability so that if one
fers to program within a product like Excel itself, it might be that the
enhanced functionality of HyperChem along with more Hcl scripts is mo
important to you than the addition of Tcl/Tk.

We emphasize Microsoft Excel here as our spreadsheet example but ot
spreadsheets such as Lotus 123, Quatro Pro, etc. also have DDE capab
and could be used to communicate with and exchange data with HyperC
The examples here are restricted to Excel, however.

We will illustrate the interface of HyperChem and Microsoft Excel using t
same example as we began with in describing Microsoft Word, i.e. the tri
example that sets an HSV (window-color).

Red (and Green)

A very simple Excel Macro is the following:

Running this macro, RED.XLM, will change the color of the HyperChem win
dow to red. It can be run by simple hitting Ctrl-r on the keyboard (provide
Excel is running) or from the <Tools/Macro...> menu item. As in earlier
examples, we simply initiate a conversation with the application, Hyper-
Chem, on the topic, System. We then execute a DDE command that is the
script command, window-color red. A similar macro could change the color
to green but with a different keyboard accelerator such as Ctrl-g. Then, a
114 Chapter 8

DDE Interface to Microsoft Excel

d

lly
g is
em.

 in
e
etail
ples

he
akes
pen-
ite
e
nately hitting Ctrl-r and Ctrl-g would flash the HyperChem window from re
to green to red..., etc.

The macro DDE commands, EXECUTE and REQUEST are fundamenta
all you need to communicate with HyperChem. Other macro programmin
needed, of course, to deal with the data coming from or going to HyperCh

Additional Macros

The Excel macro language and Excel itself provide a powerful capability
combination with HyperChem but will not be described in detail here. Th
HyperChem Getting Started and Reference manual provide additional d
associated with the interaction between HyperChem and Excel and exam
*.XLM files have been distributed with HyperChem since its inception. T
ChemPlus product includes the code for an extensive Excel macro that m
3D Ramachandran-like plots of the energy of a molecule versus two inde
dent structural variables. You should also check the Hypercube WWW s
(http://www.hyper.com) where Excel macros, along with scripts, are mad
available to users of HyperChem.
DDE Interface to HyperChem 115

DDE Interface to Microsoft Excel
116 Chapter 8

ast
in
inst
ram-
u to

eeks
 4.0

ct-
ting
nch-
es
c.
ds
an,

I
 is
ples
Chapter 9

DDE and Visual Basic

Introduction

This chapter describes the DDE interface between HyperChem and
Microsoft’s Visual Basic (VB). VB is chosen because it provides a very f
way of building extensions to HyperChem. While VB is not the only tool
its class, it is certainly one of the better ones. Some of the prejudice aga
Basic as a serious programming language remains, among scientific prog
mers and others. VB, however, is a serious modern tool that can allow yo
very quickly put together applications, particularly applications involving
graphical user interfaces, in a few hours - applications that used to take w
or longer. For the demonstrations of the chapter, we will use Visual Basic
although earlier releases are also appropriate to use.

VB for GUIs or Computation

While one can certainly write whole applications in Visual Basic, its obje
oriented character and uniqueness are illustrated best when quickly put
together a graphical user interface(GUI) rather than scientific number cru
ing types of code. A potential compromise is to build dynamic link librari
(DLL’s) with C, C++, or Fortran and just have the GUI built in Visual Basi
A VB program can call a DLL, and you can choose the best of both worl
by rapidly protyping a user interface in VB and using legacy code in Fortr
for example.

VB with DDE or HAPI Calls

Since VB can call a DLL, it can call the DLL that defines the HyperChem
Application Programming Interface (HAPI.DLL). The subject of the HAP
library, its calls, and how to use this method of interfacing to HyperChem
the subject of Chapter 11 and the subsequent chapters which give exam
117

Red and Green

a

B
o

ges

 it is

nd
two

an
of the HAPI library being used in various contexts. Chapter 11 includes
brief example of using HAPI calls with VB.

This chapter will focus on the low-level DDE interface to HyperChem for V
programs but we will also discuss very briefly the alternative HAPI way t
build an interface between HyperChem and VB.

Red and Green

Our first example of a Visual Basic program communicating with Hyper-
Chem is, by now, our familiar and trivial example of a program that chan
the background color of a HyperChem window. This particular example,
however, also monitors the current color and displays the color, whether
changed by the VB program or through the <Preferences> dialog box in
HyperChem.

Basic Form and Controls

The VB project file for this example is called REDGREEN.VBP and is on
the HyperChem CD-ROM. It was created by just opening Visual Basic a
adding to the main form, three text boxes, Text1, Text2, and Text3 plus
command buttons, Command1 and Command2.

It is possible to lay out these linkcontrols and start from scratch or you c
just read REDGREEN.VBP from the HyperChem installation directories,
118 Chapter 9

Red and Green

, to
d”
rop-

n-

shes
w
d
What we have done here is to change the caption of Form1, the main form
“DDE to HyperChem” and the caption of the two command buttons to “Re
and “Green”. We have also positioned the controls that have the Visible p
erty set to “true”, i.e. Text2, Command1, and Command2. We have also
changed the background color of Form1 to white and shrunk it a bit. A ru
ning version of the program might look as follows:

Start Up (Load)

The most important code in this example is that which on start up establi
the basic link with HyperChem and retrieves the initial color of the windo
(which will be restored on exit). The following is the code that is execute
when Form1 loads,
DDE and Visual Basic 119

Red and Green

sso-
1 or

ield
elds
here

em.
es a
em
ext1
-
SV,

e of

 set
ox,
pri-

s
Private Sub Form_Load()

If Text1.LinkMode = 0 Then

 Text1.LinkTopic = "HyperChem|System"

 Text1.LinkMode = 2

End If

 Text1.LinkItem = "window-color"

 Text1.LinkRequest

 Text2.Text = Text1.Text

If Text3.LinkMode = 0 Then

 Text3.LinkTopic = "HyperChem|System"

 Text3.LinkItem = "window-color"

 Text3.LinkMode = 1

End If

End Sub

With Visual Basic, a communication channel to HyperChem becomes a
ciated with a control such as one of the text boxes on the form, i.e. Text
Text3. Once such a channel is set up, text being passed back and forth
between the VB application and HyperChem is stored in VB, as the text f
associated with the control, i.e. as Text1.Text or Text3.Text. These text fi
are where Hcl script commands are placed prior to their execution and w
any HSV messages coming from HyperChem end up.

A Cold Link Request

The LinkMode field for a text object describes the type of channel that is
established or exists with another application (DDE server) like HyperCh
A value of 0 indicates no link or channel. Setting the value to 2 establish
cold link for the channel such that values will be returned from HyperCh
only when requested. The first operation on start up is thus to use the T
object to establish a cold link with HyperChem on the generic topic, “Sys
tem”. Subsequently, a message request is made of HyperChem for the H
window-color. The return message from HyperChem containing the valu
the HSV, window-color, is automatically placed into the text field of the
Text1 object, i.e. as Text1.Text. The Text1 object has the visible property
to false so that it is not visible on the running application. Another text b
Text2, is used to display the value of the current window color. The appro
ate operation above is to just pass Text1.Text into Text2.Text so that it i
shown to the user.
120 Chapter 9

Red and Green

r-
hem
-

isten

xt

n be
 our

ject
ow

f the
 for

Here
om
a
yed

 the
A Hot Link

The Text3 object in this example is used to establish a “hot link” to Hype
Chem, associated with LinkMode = 1. This means that whenever HyperC
detects that window-color changes its value, from whatever source, Hyper
Chem will notify whoever is listening of the new value. Setting LinkMode
equal to 1 establishes this hot link to HyperChem requesting a desire to l
to the LinkItem.

The value returned to the VB application by HyperChem goes into the te
field of Text3 and this field is automatically updated whenever the value
changes in HyperChem. This placing of the new value into Text3.Text ca
detected using the routine, Text3_Change(). The code for this routine in
example is,

Private Sub Text3_Change()

Text2.Text = Text3.Text

End Sub

This just takes the current value of the color and places it into the Text2 ob
so that it is visible to the user of the VB application as part of the VB wind
(form).

Execute

Next, we look at the code behind the two buttons that change the color o
HyperChem window to Red or Green when they are “clicked”. The code
the red command button is,

Private Sub Command1_Click()

Text1.LinkExecute ("window-color red")

Text2.Text = "window-color = Red"

End Sub

This code, simply sends a Hcl script command message to HyperChem.
it changes the window color to red but it could be any script command fr
the HyperChem Command Language (Hcl) except that it should not be
query of an HSV (Use LinkRequest for these). In addition, the color displa
locally in Text2 is updated.

Unload

The final portion of this example is the code that is executed on exit from
VB application. This is,

Private Sub Form_Unload(Cancel As Integer)
DDE and Visual Basic 121

A HAPI Interface to VB

xt

er-
 link.
nal
er

er
The
ll
se
eir

cl
is,

-

o
t

..
 For-
Text1.LinkExecute (Text1.Text)

End Sub

This code return the color of the HyperChem window to its original color
prior to executing the VB application. This color is still stored in Text1.Te
as per the original request on loading of the form.

A HAPI Interface to VB

The Visual Basic example above showed how to make DDE calls to Hyp
Chem, via an object such as a text box that provides the DDE channel or
It is very object oriented but not an obvious way to do things for conventio
C and Fortran programmers. Nor is it immediately obvious how to transf
binary data in this fashion.

The HAPI interface for VB consists of a set of straight-forward calls (eith
for text or binary data) that can be implemented in ordinary Basic code.
calls, such as hbExecBin which executes a binary form of a Hcl command, a
begin with “hb”. Thus hbExecTxt is the text equivalent of the above. The
and all the other HAPI calls that refer to Hcl script commands take as th
first argument a long integer, defined in the file HSV.BAS. This integer maps
to one of the many Hcl menu activations, direct commands, or HSV
read/writes. For these calls, the name of the long integer is the normal H
name, e.g. window-color, but with hyphens replaced by underscores. That
the relevant VB name to use for HAPI calls is window_color. Thus,

Dim Value As Double

Dim Result as Long

Value = 3.5

Result = hbSetReal(dipole_moment, value, 8)

is the code which would constitute a binary write of the value 3.5 to the
HyperChem dipole moment. The integer variable “dipole_moment” is
defined in HSV.BAS. This call is really targetted at a corresponding C lan
guage routine, hcSetReal, contained in the dynamic link library, HAPI.DLL.
The file HAPI.BAS makes the appropriate declaration to tie hbSetReal t
this DLL and should be included in all your Visual Basic applications tha
wish to use the HyperChem API.

Thus, any of the HAPI calls of Chapter 11 or Appendix C can be used in
Visual Basic programs. All that is necessary is to include two files, HSV.BAS

and HAPI.BAS, in your project and to make calls to routines labelled hb.
rather than to the hc... calls of the C/C++ language or to the hf... calls of
122 Chapter 9

A HAPI Interface to VB

are
tran. Appendix C gives the details of each HAPI call including how to decl
and use them from Visual Basic.
DDE and Visual Basic 123

A HAPI Interface to VB
124 Chapter 9

e 5.
s
on-

r-
a dif-
er-
 Com-
ro-

t as
ou

ly
ere
per-

on
a-
Chapter 10

External Tcl/Tk Interface

Introduction

Hypercube has built a Tcl/Tk interpreter directly into HyperChem Releas
This interface derives from Version 7.5 of Tcl and Version 4.1 of Tk. Thi
internal interpreter is probably the most convenient way to use Tcl/Tk in c
junction with HyperChem, i.e. by either opening a *.tcl file or by execut-
ing a Hcl script command, read-tcl-script. There is, however, an alternative
way to use Tcl/Tk that is called the external interface.

The external use of Tcl/Tk implies that you use a Tcl/Tk program or inte
preter that is completely separate from HyperChem and may even be of
ferent version than the one used in HyperChem. This external Tcl/Tk int
preter can then be augmented in a standard way to add the HyperChem
mand Language (Hcl) as an embedded extension. The external Tcl/Tk p
gram communicates ultimately with HyperChem via Dynamic Data
Exchange (DDE). But, as a user, you need only to make “HAPI calls” jus
with the internal interpreter. That is, hcExec and hcQuery are still how y
invoke Hcl commands with external Tcl/Tk.

Why External?

The interpreter for Tcl/Tk which is built into HyperChem offers an extreme
powerful extension to the HyperChem Command Language. However th
are certain situations where you might prefer external Tcl/Tk access to Hy
Chem. Such situations arise when:

1. You want to connect to HyperChem from another complex applicati
already containing a Tcl/Tk interpreter as an extension to that applic
tion.
125

Invoking External Tcl/Tk

SV
k

ted
 are

 use
ter

g
er-

-

2. You want your Tcl program to react to changes in HyperChem via H
notifications. Notifications cannot be easily defined with internal Tcl/T
scripting.

3. A new version of Tcl/Tk becomes available and it is not yet incorpora
into HyperChem. The new version of Tcl/Tk has enhancements that
necessary to you.

4. The internal implementation of Tcl/Tk does not perform correctly for
some non-regular scripts or you encounter a devastating bug.

Hypercube has implemented a Tcl/Tk extension “package” (called the
THAPI package) that you can load into a standard Tcl/Tk interpreter and
to communicate with HyperChem through regular HAPI calls. This chap
describes this extension.

Invoking External Tcl/Tk

The external copy of Tcl/Tk is invoked in Microsoft Windows by executin
the interpreter program, a WIndows SHell called Wish. Associated with V
sion 4.1 of Tk, this program is called wish41 and is included in your program
directory along with your executable of HyperChem.

Executing wish41.exe gives a Console window, shown below after exe
cuting “?” to see all the possible Tcl/Tk commands.
126 Chapter 10

The THAPI package

s,
st

k
can
pli-

and

LL.

/Tk
low-

c-
om
 “\”
In addition to this console window, into which you type Tcl/Tk command
you obtain another window where Tk widgets get placed after you reque
them from the Console window.

The THAPI package

It is possible to add new functions, called packages, to the external Tcl/T
interpreter without having to recompile Tcl/Tk. The set of commands that
be added to an external copy of Tcl/Tk are part of the Tcl Hyperchem Ap
cation Programming Interface (THAPI). There are 12 commands in total
they are all contained in a Dynamic Link Library (DLL) called THAPI.DLL.
These commands are essentially a subset of the HAPI calls from HAPI.D

To obtain these new commands in Tcl/Tk you use the Tcl load command giv-
ing it the file name of the appropriate package DLL. Thus, to augment Tcl
and embed all the HyperChem API calls, you should just execute the fol
ing Tcl command in the Console window,

load thapi

If the THAPI.DLL is not available in the current path nor in Windows dire
tory, you must specify a full path to the file. Remember that Tcl comes fr
the UNIX world and you must type a slash, ”/”, rather than a back slash.
as the file folder separator in the Console window.
External Tcl/Tk Interface 127

The THAPI package

,
por-

able
is

ting
,

er
API
nal

ltiple

pt
as

it as
Commands

THAPI, based on the full HAPI interface of the last chapters of this book
defines a dozen new Tcl/Tk commands that enable you to call the most im
tant features of the HyperChem Application Programming Interface from
your Tcl/Tk external program. Further details on these commands is avail
in conjunction with a description of the HAPI calls in Appendix C. THAPI
a subset of HAPI.

The THAPI commands divide up into commands associated with connec
to HyperChem, the execution of Hcl commands, a utility copy command
HSV notifications, time-outs, and error processing.

The THAPI commands, which are case sensitive, are:

hcConnect <instance>

This command connects a Tcl/Tk program to HyperChem so that the oth
THAPI commands can be executed. It must be called before any other TH
commands and after the command loading THAPI. The argument is optio
but can be used to connect to a specific instance of HyperChem when mu
instances exist simultaneously.

hcDisconnect

This command disconnects the Tcl/Tk program from HyperChem.

hcExec hcl_script_command

This command passes its argument to HyperChem as a normal Hcl scri
command. The argument may need to be enclosed in quotes if it itself h
arguments.

hcQuery hsv

This command queries HyperChem for the value of an HSV and returns
a string

hcCopy source_file desination_file

This command copies a file.
128 Chapter 10

The THAPI package

rgu-
/Tk
y-
 of

rmi-

l

k
e.

e
-out
m-
nds,

 the

f an
hcNotifyStart hsv

This command requests a notification of the HSV corresponding to the a
ment. If the HSV changes in HyperChem its new value will sent to the Tcl
script. The new value can be made available to the script via hcGetNotif
Data. No call-back routines are available in scripts so that the execution
hcGetNotifyData must be periodically scheduled via a Tcl command like
after (see the monitor example).

hcNotifyStop hsv

This command requests that the notification of changes in an HSV be te
nated.

hcGetNotifyData notification_data

This command will place the result of the first notification from an interna
buffer into the argument, notification_data. The command returns the HSV
corresponding to the original notification (or NULL) so that you can chec
whether a notification has happened or not and whether it is the right on

hcSetTimeouts exec_timeout query_timeout rest_timeout

This command controls the time-out for interaction with HyperChem if th
default values (65 seconds) is inappropriate. The exec_timeout is the time
for hcExec commands, the query_timeout is the time-out for hcQuery co
mands, and the rest_timeout is the time-out for the remaining Hcl comma
such as for notifications.

hcLastError error_text

This command places text describing the last error in error_text. It returns
following values:

errNO_ERROR = 0 No error

errFATAL = 1 Fatal error of unknown origin

errNON_FATAL = 2 Non fatal error of unknown origin

hcSetErrorAction action_flag

This command sets the behavior flag that will be used, upon recognition o
error. The arguments are as follows:

errACTION_NO = 0 No action on any error
External Tcl/Tk Interface 129

A Notification Example

ge

ted

s

bili-
ible
he

ly
ow
ut
u

algo-

s
lly

o

ts

n.
errACTION_MESS_BOX = 16 Display message box with error messa

errACTION_DISCONNECT = 32 Disconnect from HyperChem

errACTION_EXIT = 64 Immediately exit from application

errDDE_REP = 1 Report low-level DDE errors

errDDE_NO_REP = 2 Do not report low-level DDE errors

hcGetErrorAction

This command retrieves the behavior flag showing how errors will be ac
upon. The values returned are the same as the values set by hcSetErrorAction.

A Notification Example

Notification is a powerful capability associated with HyperChem. It allow
you to request a live link to HyperChem such that you are notified of any
change in an indicated variable or data structure. This allows many capa
ties that would not be possible otherwise. In particular, this makes it poss
to have very intimate connections between your custom capability and t
“guts” of HyperChem without getting into source code details. It is not
required to know the intimate details of how HyperChem operates but on
that it must be operating in certain ways. Thus, for example, one would kn
that at the heart of optimizations are energy and gradient changes witho
worrying about what specific algorithm is being used by HyperChem. Yo
can just ask to monitor these changes without having to dive into code,
rithms, etc.

Most external Tcl scripts are identical with internal Tcl scripts. A notable
exception is that notifications cannot be processed by internal Tcl script
(HyperChem does not send messages to itself!). Notifications are norma
associated with external programs like Microsoft Excel, Word or Visual
Basic or external applications build in C, C++, and Fortan. If you intend t
build software in Tcl that requires notification, you will need to do it with
external Tcl/Tk. The example of this section is one that monitors and plo
values of any HSV that is of potential interest to you. A specific example
would be to monitor the energy or rms gradient of a structure optimizatio

The Tcl script is executed from the Console as follows:
130 Chapter 10

A Notification Example

 the
sso-
t”
The source command begins the execution of *.tcl file as the next com-
mand. In this case it is monitor.tcl which sets up a Tk window that look
as follows:

The Tcl code for setting up this window can be investigated by looking at
file installed from the CD-ROM but here we want to focus on the code a
ciated with the notifications. The code behind the button, “Start New Plo
leaving out everything unessential to the notifications is,
External Tcl/Tk Interface 131

A Notification Example

.
e
hen

een

noti-
h, a
. In
 see if

med
ing
button .bts.plot -text "START NEW PLOT" -command {

if {$Prevhsv != -1} {

hcNotifyStop $Prevhsv

}

hcNotifyStart $hsv

set Prevhsv $hsv

if {$IsMonitor == -1} {

monitor

set IsMonitor 1

}

}

When the button is pushed, any previous notifications are first cancelled
Then a new notification is requested for the new HSV which shows in th
window as total-energy and which is stored in the value, $hsv. A call is t
made to a proc called monitor which will do the monitoring.

proc monitor {} {

global hsv interval

set name [hcGetNotifyData a]

if { $name == $hsv } {

<TAKE $A, THE TOTAL ENERGY POINT AND SAVE FOR PLOTTING>

}

monitor restarts after plotting

after $interval [list monitor]

}

The code associated with collecting and plotting the notification data has b
abstracted away. The monitoring is done by executing the command, hcGet-
NotifyData., to see if there really is any notification data available, i.e. the
command returns the name of the HSV being monitored. If there was a
fication, it is dealt with. If not, or there was data and it has been dealt wit
call is made to re-schedule a return to monitor after $interval milliseconds
general, this means the process now goes to sleep and wakes up later to
any notifications have arrived.

If you had connected the monitor example to HyperChem and then perfor
an optimization, the graph displayed in the TK window might look someth
like the following:
132 Chapter 10

A Notification Example
External Tcl/Tk Interface 133

A Notification Example
134 Chapter 10

ce
to
,
API
ersa-
l

ta
 a

ple
han-
uni-
em
not
ing
m
 run-
ith-

m-
her

ld
her
lica-

e a
Chapter 11

The HAPI Interface to HyperChem

Introduction

This chapter describes the HyperChem Application Programming Interfa
(HAPI or HyperChem API), the system library developed by Hypercube
simplify the task of communication with HyperChem. Instead of sending
posting and processing Windows DDE messages, an application makes H
calls and uses a set of functions provided by the API to manage the conv
tion between HyperChem and your external program. This is a high-leve
replacement for communicating via a lower-level DDE call.

The HyperChem API performs the task of packing and unpacking the da
coming to and from messages so that arguments to HAPI calls can be in
form that you are familiar with and calls to the HAPI library become a sim
extension to normal C or Fortran programming. The sophisticated error
dling built into the HyperChem API guarantees robustness of the comm
cation. While it is possible for applications to communicate with HyperCh
without HAPI calls (as described in chapters 8 and 9, for example), it is
the recommended procedure. The HAPI library is meant for users intend
to write their own sophisticated interfaces or back ends to the HyperChe
front end. Moreover, some applications, such as most Fortran programs
ning under Windows 95 and NT, cannot easily interface to HyperChem w
out the HyperChem API.

Another reason for using the set of HAPI calls rather than DDE is the co
patibility issue. There are indications that DDE may be replaced by anot
communication paradigm (OLE Automation) in future versions of
Microsoft’s operating systems. It thus might happen that Hypercube wou
need to change its underlying communication protocol from DDE to anot
messaging system in future releases of its HyperChem core product. App
tions using the HAPI calls will preserve compatibility, while those that us
lower-level DDE protocol might lose future compatibility.
135

Towards a Chemical Operating System

age
ic-
Sys-

s
t it
and
ser-
r-

are:

h of
136 Chapter 11

Towards a Chemical Operating System

The richness of HyperChem, evident in its HyperChem Command Langu
(Hcl), its embedded Tcl/Tk interpreter, and its HAPI library of calls, is ind
ative of a direction Hypercube is making towards a Chemical Operating
tem (The HyperChem OS). A picture of this system is as follows:

In this picture we have divided HyperChem into the fundamental service
(building molecules, performing calculations, visualizing results, etc.) tha
supplies to its normal users (and can provide to your external program)
the graphical user interface (GUI) that normal users use to get at these
vices. These services are all available by making HAPI calls to the Hype
Chem “Operating System”.

The Components

The components of the HyperChem Application Programming Interface

• hc.h - This is the header file for C and C++ interfaces that define eac
the entry points for the HyperChem API.

Hardware

Microsoft Windows and NT

HyperChem OS

HyperChem

GUI

Tcl/Tk
Scripting
and

GUI

Your

Program

HAPI
Calls

HAPI
Calls

The HAPI Calls

V
++

t C
m.

am.

r-

r-

de

fine

ry
-

n in
hat

g.

g a
 for
e
gin
• hsv.h - This header file defines an integer corresponding to each HS
and is needed if binary communication to HyperChem from C and C
programs is to be used.

• hcload.c - This file contains the C code for the LoadHAPI routine tha
and C++ programs should call to load the HAPI calls before using the
It generally is placed after the hc.h and hsv.h files in a C/ C++ progr

• HAPI.DLL - This is the DLL that must get loaded to access the Hype
Chem API.

• HAPI.LIB - This is the file that could be linked with your C, C++ or Fo
tran application as an alternative to calling LoadHAPI.

• hc.fi - The Fortran equivalent of hc.h as an include file to define the
HAPI calls of your program.

• hsv.fi - The Fortran equivalent of hsv.h. This file is a necessary inclu
file for your Fortran program if it is to attempt binary communication
with HyperChem.

• hapi.bas - The Visual Basic equivalent of hc.h as an include file to de
the HAPI calls of your program.

• hsv.bas - The Visual Basic equivalent of hsv.h. This file is a necessa
include file for your Visual Basic program if it is to attempt binary com
munication with HyperChem.

The HAPI Calls

A complete and detailed documentation of each of the HAPI calls is give
Appendix C. Here we briefly list the calls and describe the kinds of calls t
are in the library. These calls can be made from C, C++, Fortran, Visual,
Basic, or external Tcl/Tk programs among others. In some situations, e.
Tcl/Tk, the implemented set of calls is a subset of the full set.

In listing the calls below, we indicate their type and their arguments usin
C-like syntax. Further details are again available in Appendix C. The calls
Fortran have the syntax, hfHAPICALL, the calls for Visual Basic have th
syntax, hbHAPICALL, whereas the calls for other language situations be
with hc and have the syntax, hcHAPICALL.
The HAPI Interface to HyperChem 137

The HAPI Calls

ns

 be

em.
ee

 a
alls
Initialization and Termination

BOOL hcInitAPI (void)

This call is generally not needed in most contexts as initialization happe
automatically.

BOOL hcConnect (LPSTR lszCmd)

This call connects to HyperChem. A non-null string as an argument can
used to connect to a specific instance of HyperChem.

BOOL hcDisconnect (void)

This call disconnects from HyperChem.

void hcExit(void)

This causes immediate termination of the calling application.

Discussion

The principal call of importance here is the one that connects to HyperCh
Prior to connecting, however, the HAPI library must have been loaded. S
below how you should load the appropriate DLL or LIB file.

Text-based Basic Communication Calls

BOOL hcExecTxt (LPSTR script_cmd)

This sends an Hcl script command to HyperChem.

LPSTR hcQueryTxt (LPSTR var_name)

This queries an HSV in HyperChem.

Discussion

These are the text calls that send a command to HyperChem or perform
Read/Write of a HyperChem State Variable (HSV). They correspond to c
in the HyperChem Command Language (Hcl), i.e. they involve either a menu
invocation, e.g. menu-file-open, a direct command, e.g. do-molecular -
dynamics, an HSV write, e.g. window-color green, or an HSV read, e.g. win-
138 Chapter 11

The HAPI Calls

t,

.

ni-
 effi-
.

 For-
ands.
sed

-
ery
s the
n
 inte-
d
r

ary
dow-color ?. The reading of an HSV is performed by the call, hcQueryTx
while the other Hcl script commands are invoked by hcExecTxt.

Binary-based Basic Communication Calls

BOOL hcExecBin (int cmd, LPV args, DWORD args_length)

This is the binary form for sending an Hcl script command to HyperChem

LPV hcQueryBin(int hsv, int indx1, int indx2, int* length)

This is the binary form for querying an HSV in HyperChem.

Discussion

The HyperChem Command Language is basically a text form for commu
cating and exchanging data with HyperChem. For completeness and for
ciency there is an equivalent binary form for all the Hcl script commands
These can be much more effective and simpler to use in languages like
tran where one has to use character data to invoke normal script comm
See the programming examples for examples of both text and binary ba
communication with HyperChem.

With text based communication you use strings, like “window-color” and
“do-molecular-dynamics” to denote the HSV of interest or the direct com
mand that you want to invoke. With binary versions of hcExec and hcQu
you use an integer to denote the operation. The name of this integer ha
syntax, window_color or do_molecular_dynamics, for example, where a
underscore replaces the hyphen or minus sign of a Hcl text string. These
gers are defined in hsv.h, hsv.fi, and hsv.bas for C and C++, Fortran, an
Visual Basic applications. Only text-based communication is available fo
Tcl/Tk.

Binary Format

The binary form of a HAPI call results in a binary message being sent to
HyperChem rather than a simple text message. The format of these bin
messages is

Length* Binary Code Arguments**

4 bytes 4 bytes n-bytes
The HAPI Interface to HyperChem 139

The HAPI Calls

d to

in
ns of
-

the

.

*To make the binary message different from a text message it is require
set the highest bit of the first field to 1.

** Arguments are also coded as binary data.

The binary code for each command is the 4-byte integer number found
hsv.h, hsv.fi, or hsv.bas. The codes may change between different versio
HyperChem. Three utility Tcl scripts are included on the HyperChem CD
ROM, called cgenhsv.tcl, fgenhsv.tcl, and bgenhsv.tcl that
are capable of generating the correct hsv.h, hsv.fi, and hsv.bas files for
version of HyperChem that you are using.

To issue a binary command the user uses, for example:

result=hcExecBin(hsv,arg,length);

in a C/C++ program, or

result=hfExecBin(hsv,arg,length)

in a Fortran program.

Binary-based Get Integer Calls

int hcGetInt (int hsv)

This call gets the binary value of an integer HSV.

int hcGetIntVec(int hsv, int* buff, int max_length)

This call gets all the binary values of an integer vector HSV into a buffer

int hcGetIntArr (int hsv, int* buff, int max_length)

This call gets all the binary values of an integer array HSV into a buffer.

int hcGetIntVecElm (int hsv, int index)

This call gets a single binary element of an integer vector HSV.

int hcGetIntArrElm (int hsv, int atom_index, int mol_index)

This call gets a single binary element of an integer array HSV.
140 Chapter 11

The HAPI Calls

les,
e the

V.
iable

V.
iable
Discussion

These calls are specialized forms of hcQueryBin specific to integer variab
vectors, and arrays. One form gets the whole vector or array at once whil
other form (Elm) gets only a single element at once.

Binary-based Get Real Calls

double hcGetReal (int hsv)

This call gets the binary value of a real HSV.

int hcGetRealVec(int hsv, double* buff, int max_length)

This call gets all the binary values of a real vector HSV into a buffer.

int hcGetRealArr (int hsv, double* buff, int max_length)

This call gets all the binary values of a real array HSV into a buffer.

double hcGetRealVecElm (int hsv, int index)

This call gets a single binary element of a real vector HSV.

double hcGetRealArrElm (int hsv, int atom_index, int mol_index)

This call gets a single binary element of a real array HSV.

int hcGetRealVecXYZ (int hsv, index, double* x, double* y,
double* z)

This call gets the three real values of a single element of a real array HS
The three real values are normally the Cartesian components of a real var
such as a dipole moment, etc.

int hcGetRealArrXYZ (int hsv, int atom_index, int mol_index,
double* x, double* y, double* z)

This call gets the three real values of a single element of a real array HS
The three real values are normally the Cartesian components of a real var
such as a coordinate, etc.
The HAPI Interface to HyperChem 141

The HAPI Calls

s,
e the
spe-

.

nvey
er not

.

Discussion

These calls are specialized forms of hcQueryBin specific to real variable
vectors, and arrays. One form gets the whole vector or array at once whil
other form (Elm) gets only a single element at once. The XYZ forms are
cific to Cartesian values.

Binary-based Get String Calls

int hcGetStr (int hsv, char* buff, int max_length)

This call gets a string corresponding to all values of the HSV.

int hcGetStrVecElm (int hsv, int index, char* buff, int max_length)

This calls gets a string corresponding to a particular element of a vector

int hcGetStrArrElm (int hsv, int atom_index, int mol_index, char*
buff, int max_length)

This call gets a string corresponding to a particular element of an array.

Discussion

These calls correspond very closely to the text based calls in that they co
arguments as a string. However the HSV is represented as a binary integ
as a string.

Binary-based Set Integer Calls

int hcSetInt (int hsv, int value)

This call sets the binary value of an integer HSV.

int hcSetIntVec(int hsv, int* buff, int length)

This call sets length binary values of an integer vector HSV into a buffer

int hcSetIntArr (int hsv, int* buff, int max_length)

This call sets length binary values of an integer array HSV into a buffer.
142 Chapter 11

The HAPI Calls

for
array

. The
le
int hcSetIntVecElm (int hsv, int index, int value)

This call sets a single binary element of an integer vector HSV.

int hcSetIntArrElm (int hsv, int atom_index, int mol_index, int
value)

This call sets a single binary element of an integer array HSV.

Discussion

These calls are specialized forms of hcExecBin specific to writing HSV’s
integer variables, vectors, and arrays. One form sets the whole vector or
at once while the other form (Elm) sets only a single element at once.

Binary-based Set Real Calls

int hcSetReal (int hsv, double value)

This call sets the binary value of a real HSV.

int hcSetRealVec(int hsv, double* buff, int length)

This call sets length binary values of a real vector HSV into a buffer.

int hcSetRealArr (int hsv, double* buff, int length)

This call sets length binary values of a real array HSV into a buffer.

int hcSetRealVecElm (int hsv, int index, double value)

This call sets a single binary element of a real vector HSV.

int hcSetRealArrElm (int hsv, int atom_index, int mol_index,
double value)

This call sets a single binary element of a real array HSV.

int hcSetRealVecXYZ (int hsv, index, double x, double y, double z)

This call sets the three real values of a single element of a real array HSV
three real values are normally the Cartesian components of a real variab
such as a dipole moment, etc.
The HAPI Interface to HyperChem 143

The HAPI Calls

. The
le

for
ay at
YZ

nvey
er not

.

int hcSetRealArrXYZ (int hsv, int atom_index, int mol_index,
double x, double y, double z)

This call sets the three real values of a single element of a real array HSV
three real values are normally the Cartesian components of a real variab
such as a coordinate, etc.

Discussion

These calls are specialized forms of hcExecBin specific to writing HSV’s
real variables, vectors, and arrays. One form sets the whole vector or arr
once while the other form (Elm) sets only a single element at once. The X
forms are specific to Cartesian values.

Binary-based Set String Calls

int hcSetStr (int hsv, char* string)

This call sets an HSV to the value of a string.

int hcSetStrVecElm (int hsv, int index, char* string)

This call sets a particular element of an HSV vector to a string.

int hcSetArrElm (int hsv, int atom_index, int mol_index, char*
string)

This call sets a particular element of an HSV array to a string.

Discussion

These calls correspond very closely to the text based calls in that they co
arguments as a string. However the HSV is represented as a binary integ
as a string.

Get and Set Blocks

int hcGetBlock (int hsv, char* buff, int max_length)

This call gets all the data, irrespective of type, corresponding to an HSV
144 Chapter 11

The HAPI Calls

.

d to
int hcSetBlock (unt hsv, char* buff, int length)

This call sets an HSV, irrespective of its type from a buffer.

Discussion

These calls do block copies of data associated with an HSV of any type

Notification Calls

int hcNotifyStart (LPSTR hsv)

This call requests a notification for an HSV.

int hcNotifyStop (LPSTR hsv)

This call terminates a request for notification of an HSV.

int hcNotifySetup (PFNB pCallBack, int NotifyWithText)

This call establishes how notifications are to be handled.

int hcNotifyDataAvail (void)

This call determines whether a notification is available.l

int hcGetNotifyData (char* hsv, char* buff, int max_length)

This call gets the data associated with a notification on an HSV.

Discussion

These calls are associated with notifications.

Memory Allocation

void * hcAlloc (size_t, n_bytes)

This allocates memory associated with the HAPI but is not recommende
replace the normal user memory allocation routines.
The HAPI Interface to HyperChem 145

The HAPI Dynamic Link Library (HAPI.DLL)

the

 of
s in

hcFree (void* pointer)

This frees memory allocated with hcAlloc or after processing data from
hcQueryTxt and hcQueryBin which allocate memory for the result of the
query.

Discussion

These calls are for memory allocation and deallocation associated with
HAPI.

Auxiliary Calls

void hcShowMessage (LPSTR message)

This call displays a message box with the message provided.

void hcSetTimeouts (int ExecTimeout, int QueryTimeout, int
OtherTimeout)

This call sets timeouts for hcExec, hcQuery, and other HAPI calls.

int hcLastError (char* LastErr)

This call enquires about the last error.

int hcGetErrorAction (void)

This call asks how errors are currently being handled.

void hcSetErrorAction (int err)

This call sets how errors are to be handled.

Discussion

Further details on these calls are available in Appendix C.

The HAPI Dynamic Link Library (HAPI.DLL)

The HyperChem Application Programming Interface (HAPI), forms a set
system calls that can be utilized by an application to perform certain task
conjunction with HyperChem. It is somewhat analogous to the Microsoft
146 Chapter 11

How to use the HyperChem API

nk

m as

ft’s
ere

I

a
 run-
into
ing
his
 pain-
ppli-

e
+
ls

ve

si-

d-
er-

 it
 of
face
s an
 the
Windows API and is implemented in a similar way, through a dynamic Li
Library (DLL).

The whole Microsoft Windows operating system is seen by a user progra
an API - the Microsoft Windows 32-bit API for Windows 95 and NT. For
example, this means that a user writing code in C can utilize all Microso
system calls that form the API. In addition to the generic Windows API th
are specific API’s, such as the WINSOCK API - the library that defines
TCP/IP communication for Windows applications. Usually, a Microsoft AP
is provided to users in a form of a DLL.

A Dynamic Link Library is specific to Microsoft Windows and NT and as
library has one important feature: it can be linked to the user program at
time. In most cases, it can also be linked while the application is loaded
memory (load time). At run-time, however, it can be loaded any time dur
program execution, as well as unloaded when it is no longer required. T
feature is of great importance, as it provides both users and developers a
less method of improving upon both the standard Microsoft API and an a
cation specific API.

The HyperChem API (HAPI) has been developed as a 32-bit DLL that is
compatible with Microsoft Windows 95, Microsoft NT and Microsoft’s
W32S 32-bit subsystem for Windows 3.1. Thus, it can be used with all th
programming tools that call 32-bit DLLs including almost all modern C/C+
and Fortran compilers, 32-bit versions of Microsoft Visual Basic, and too
like the Tcl/Tk interpreter, Microsoft Excel, Borland’s Delphi, etc.

How to use the HyperChem API

To make the HyperChem API available to your application, you must ha
the requisite header files, load the HAPI.DLL properly, and then make a
proper connection of your program to HyperChem. Alternatively, it is pos
ble to use a library file, HAPI.LIB, link it with your application and use loa
time dynamic linking. Though it is possible for you to make use of he Hyp
Chem API with a variety of compilers and development systems through
intelligent use of these tools, inspecting our header files, etc., we believe
makes sense to illustrate the tools very explicitly with a very small variety
standard environments. Thus, we have chosen to provide standard inter
source code along with the CDK so that at least for certain environment
interface to HyperChem becomes very straight-forward. We have chosen
following to illustrate the HyperChem API:

• - Microsoft 32-bit C/C++ compilers (from Visual C++ 4.0)
The HAPI Interface to HyperChem 147

How to use the HyperChem API

ype
ach
h a
d

m-
ude
r

• - Microsoft Power Station Fortran compiler (version 4.0 and higher)

• - Microsoft Visual Basic 4.0

• - Tcl/Tk implemented as a 32-bit “wish41” Windows application

Nevertheless, if you must interface to the HyperChem API from another t
of application, you can use the information in this section combined with e
function’s header information to write your own code to call the API. Suc
situation might happen when you want to use other tools such as Borlan
Delhi, for example.

Accessing the HyperChem API from C/C++ code

Run-Time Dynamic Linking

The method for accessing a function in the HAPI depends on the progra
ming language used. For C/C++ programs, the easiest method is to incl
the provided hcload.c source code just after including the main heade
file, hc.h. The typical sequence is as follows:

#include "hc.h"

#include "hcload.c"

Alternatively, instead of including hcload.c into each module of the larger
application it may be convenient to link the application with hcload.obj

during a static linkage phase. In this case the program only needs:

#include "hc.h"

The corresponding ‘makefile’ (or project workspace) would have the form:

#+++

#+ EXAMPLE make file +

#+++

userapp.exe : userapp.obj hcload.obj

 $(LINKER) $(GUIFLAGS) -OUT:userapp.exe userapp.obj hcload.obj

$(GUILIBS)

userapp.obj : userapp.c

 $(CC) $(CFLAGS) step0.c

hcload.obj : hcload.c

 $(CC) $(CFLAGS) hcload.c
148 Chapter 11

How to use the HyperChem API

’s

d,

pri-

).
e

d-
th
e
.

es
 by
In the environment of the Microsoft Developer Studio, the corresponding
action would be to insert hcload.c as another source file among the user
files, i.e. by using the menu item, <Insert/Files into Project...>.

Within your source code one of the first things to do is to dynamically loa
or activate the library. Your program has to call the LoadHAPI function
defined in hcload.c. A typical sequence would be:

/* loading HAPI.DLL */

if (!LoadHAPI("hapi.dll")) {
MessageBox(hwnd,"Error loading HAPI.DLL",

"Error",MB_OK | MB_ICONSTOP);

exit(0);

}

The LoadHAPI call takes one parameter which is a file name, HAPI.DLL.
Note that the DLL can be placed in the local directory, but the most appro
ate place is the main Windows system directory (usually C: \WINDOWS
LoadHAPI activates each of the functions in the DLL by making repetitiv
calls to GetProcAddress, the function provided by Microsoft to get the
address of the corresponding function in the DLL:

hcExecTxt=(T_hcExecTxt*)GetProcAddress(hinst,"hcExecTxt");

if (hcExecTxt == NULL) res=_hcLoadError("hcExecTxt",szN);

This method utilized by LoadHAPI is called Run-Time Dynamic Linking.

Load-Time Dynamic Linking

There is another method to link HAPI with a user application. It uses Loa
Time Dynamic Linking and requires direct linking of the user program wi
the library file (HAPI.LIB) provided with the CDK. This file contains no cod
but contains all of the API function headers and proper initialization code
You can use load-time linking by inserting HAPI.LIB as one of the librari
into a project, i.e. by the menu command, < Insert/Files into Project>, or
writing an appropriate makefile when working outside of the Microsoft
Developer Studio (using a DOS command shell for compilation).

In either cases the application still needs:

#include "hc.h"

However, with load-time linking, all the HAPI functions are available for
calling as soon as the application starts. There is no need for the LoadHAPI
call.
The HAPI Interface to HyperChem 149

How to use the HyperChem API

an-

am-

or-
er
If you are making binary calls, it is necessary to have:

#include �hsv.h�

Accessing the HyperChem API from Fortran code

To use the HAPI calls from Fortran programs you have to translate Fortr
style calls into the appropriate system calls to the HAPI. With Microsoft
Power Station Fortran it suffices to just include the file, hc.fi, provided
with the CDK and then statically link in HAPI.LIB. The code in hc.fi has
to be included in all functions and subroutines that use HAPI calls. For ex
ple:

subroutine ExeTest

 character*100 cmd

 common /flags/flagfile,fconnected

 logical res,flagfile,fconnected

 include "hc.fi"

1 write(*,*)' Script command to execute (0 - returns) ->'

 read(*,'(A)')cmd

 if (cmd.eq.'0') return

 res=hfExecTxt(cmd)

 write(*,*)' hfQueryTxt returns: ',res

 goto 1

end

What does the source inside hc.fi look like and do? It provides an INTER-
FACE (a Fortran capability of Microsoft Fortran Power Station), so the F
tran compiler can type-check all function parameters and issue the prop
calling sequences. The source looks as follows:

INTERFACE

c--

c This is a Microsoft Fortran Power Station 4 Interface to CDK API

c--

c--

c Initialization & termination functions

c--

logical function hfInitAPI()

!ms$ATTRIBUTES DLLIMPORT,ALIAS: '_hcInitAPI@0' :: hfInitAPI

end function hfInitAPI
150 Chapter 11

How to use the HyperChem API
 logical function hfConnect(init_string)

!ms$ATTRIBUTES DLLIMPORT,ALIAS: '_hfConnect@8' :: hfConnect

character*(*) init_string

end function hfConnect

 logical function hfDisconnect()

!ms$ATTRIBUTES DLLIMPORT,ALIAS: '_hcDisconnect@0' :: hfDisconnect

end function hfDisconnect

subroutine hfExit()

!ms$ATTRIBUTES DLLIMPORT,ALIAS: '_hcExit' :: hfExit

end subroutine hfExit

c---

c--

c Text Query & Execute functions

c--

logical function hfExecTxt(script_cmd)

!ms$ATTRIBUTES DLLIMPORT,ALIAS: '_hfExecTxt@8' :: hfExecTxt

character*(*) script_cmd

!ms$ATTRIBUTES REFERENCE :: script_cmd

end function hfExecTxt

logical function hfQueryTxt(var_name, res)

character*(*) var_name,res

!MS$ATTRIBUTES reference :: var_name

!MS$ATTRIBUTES reference :: res

!ms$ATTRIBUTES DLLIMPORT,ALIAS: '_hfQueryTxt@16' :: hfQueryTxt

end function hfQueryTxt

......................................

c---

integer function hfLastError(error)

!ms$ATTRIBUTES DLLIMPORT,ALIAS: '_hcLastError@4' :: hfLastError

!ms$ATTRIBUTES C,REFERENCE :: error

 character *(*) error

end function hfLastError

integer function hfGetErrorAction()

!ms$ATTRIBUTES

DLLIMPORT,ALIAS:'_hcGetErrorAction@0'::hfGetErrorAction

 end function hfGetErrorAction
The HAPI Interface to HyperChem 151

How to use the HyperChem API

-
sir-
ar
 do
subroutine hfSetErrorAction(action)

!ms$ATTRIBUTES

DLLIMPORT,ALIAS:'_hcSetErrorAction@4'::hfSetErrorAction

!ms$ATTRIBUTES VALUE :: action

 integer action

 end subroutine hfSetErrorAction

c--

c end of hc.fi

c--

END INTERFACE

If you are making binary calls, it is also necessary to have:

include �hsv.fi�

Accessing the HyperChem API from Visual Basic Code

While it is relatively straight forward for Visual Basic programs to commu
nicate with HyperChem via DDE as described in Chapter 9, it may be de
able to use the HyperChem API and HAPI.DLL from Visual Basic for simil
reasons to that described above for C, C++, and Fortran. It is possible to
so with the principal requirement being the need to have two files,
hapi.bas and hsv.bas that define the interface to the HAPI.DLL The
following is a portion of the hapi.bas file,

Attribute VB_Name = "Module1"

Declare Function hbInitAPI Lib "hapi.dll" Alias �hcInitAPI� () As Long

Declare Function hbConnect Lib "hapi.dll" Alias �hcConnect� (ByVal

command As String) As Long

Declare Function hbDisconnect Lib "hapi.dll" Alias �hcDisconnect� ()

As Long

Declare Sub hbExit Lib "hapi.dll" Alias �hcExit� ()

Declare Function hbExecTxt Lib "hapi.dll" Alias �hcExecTxt� (ByVal

script_cmd as string) As Long

Declare Function hbExecBin Lib "hapi.dll" Alias �hcExecBin� (ByVal

cmd as Long, ByRef args as Long,

ByVal args_length as Long) As Long
152 Chapter 11

How to use the HyperChem API

,

m-

95
lar
ro-

lica-

tions
re

to
akes

rs
nts
IX-

in-
er
d
ble
f a
Declare Function hcQueryTxt Lib "hapi.dll" (ByVal command As String)

As String

Declare Function hfQueryBinLib "hapi.dll" (ByVal var,indx1,

indx2 as integer, ByRef result as integer,

ByRef cbL as integer) As Integer

The Visual Basic application, DLA, which is on the HyperChem CD-ROM
is an example of a Visual Basic application that uses HAPI calls.

Accessing the HyperChem API from Tcl/Tk code

A description of this interface is given in Chapter 10. Only text-based co
munication is supported. Notifications are processed by the Notification
Agent.

Considerations for Console-based Applications

A “Console application” is a new application type available for Windows
and Windows NT operating systems. It is an implementation of the popu
text-based terminal environment well known in the UNIX world. Such a p
gram uses a regular main() function as an entry point, rather than WinMain().
Instead of communicating with the user through a GUI , the console app
tion simply writes to the screen using the regular printf call and reads using
the scanf call. This is for C code. In Fortran the familiar write, print, and read
calls are available.

But the real differences between GUI-based and Console-based applica
are much larger than just input/output. All regular Windows application a
event-driven applications, where all processing is performed by reacting
incoming messages or events, generated by the operating system. This m
writing Windows programs a difficult task for most traditional programme
with a so called top-down or serialized view of programming. This represe
a new paradigm for programming that is not in the experience of most UN
style programmers.

The console interface makes the conversion of programs from UNIX to W
dows easy and painless. Now, under Windows 95 and NT, almost all old
UNIX C and FORTRAN programs can be compiled without problems an
without severe modifications to the code. The underlying POSIX-compati
system calls layer, available for Windows NT, makes the porting to NT o
large number of “legacy” applications possible.
The HAPI Interface to HyperChem 153

How to use the HyperChem API

ere
nc-
ica-

ve

eal

.

n

into

d
However, because console applications are not event-driven, Microsoft
decided to insulate them from certain features of Windows. Particularly, th
is no possibility for an application to be called via regular DDE callback fu
tions. In practice, DDE communication can be used by the console appl
tion, as long as there is no need for the application to be called through a DDE
Callback function. However, this “callback” feature is mandatory to recei
notifications from HyperChem about the change in an HSV variable.

The Notification Agent

To work around this, HyperCube, has implemented “The Notification
Agent”. The agent is another thread of execution (both Win95 & NT are r
multithreading applications) that does the following:

• Starts a regular Windows procedure (analogous to WinMain) by register-
ing the window class and defining a WndProc-type of function that can
process all windows messages.

• The agent then opens its own DDE communication with HyperChem

• The agent registers and processes notifications and allocates its ow
buffers when necessary.

• Each notification results in buffer allocation up to the limit of memory
resources.

• The notification buffers are freed when a user copies their contents
their own memory.

• The user application access the buffers which form very simple linke
list using only two functions:

From a C Program:

DWORD _stdcall hcNotifyDataAvail()

DWORD _stdcall hcGetNotifyData(char* name, char *buffer, DWORD

MaxBuffLength)

From a Fortran program:

integer function hfNotifyDataAvail()

integer function hfGetNotifyData(name,result,res_length)
154 Chapter 11

Examples of HAPI Calls

 noti-
er

m of
dled

ling
ize.

fine
od
con-
• The first informs the caller if there is some data that has came in as a
fication message. The second copies the top-most buffer into the us
program, deallocating the buffer.

• The proper accessing by the notification agent and your user progra
a critical section of storage (the buffer area and control area) is han
by use of semaphores, making the whole solution very robust. Tests
made under both Windows 95 and NT have shown the proper hand
of data without any loss of incoming messages, irrespective of their s

The notification agent is useful also for those applications that cannot de
a callback (like a regular Tcl/Tk scripting application). It is also the meth
used by HyperChem to avoid an event-driven programming paradigm in
sole applications, particularly.

Examples of HAPI Calls

C, C++

Text-based

int result;

result = hcExecTxt(�do-molecular-dynamics�);

result = hcExecTxt(�menu-file-open�);

result = hcExecTxt (�dipole moment 2.5�);

Binary-based

int result;

double value;

value = 2.5;

result = hcExecBin (do_molecular_dynamics);

result = hcExecBin (menu_file_open);

result = hcExecBin (dipole_moment, &value, 8);

Fortran

Text-based

integer result

result = hfExecTxt (�do_molecular_dynamics�)
The HAPI Interface to HyperChem 155

Examples of HAPI Calls
result = hfExecTxt (�menu-file-open�)

result = hfExecTxt (�dipole-moment 2.5�)

Binary-based

integer result

double precision value

value = 2.5

result = hfExecBin (do_molecular_dynamics)

result = hfExecBin (menu_file_open)

Visual Basic

Text-based

Dim result As Long

result = hbExecTxt (�do_molecular_dynamics�)

result = hbExecTxt (�menu-file-open�)

result = hbExecTxt (�dipole-moment 2.5�)

Binary-based

Dim result As Long

Dim value As Double

value = 2.5

result = hbExecBin (do_molecular_dynamics)

result = hbExecBin (menu_file_open)

result = hbExecBin (dipole_moment, value, 8)
156 Chapter 11

s
s are
pli-
be
ext
and

to
ns

ave

-
.
f

ter-
pe-
dapt

rting
 to
Chapter 12

Development Using the Windows API

Introduction

This chapter describes the development of “Standard” Windows program
that interface with HyperChem. By standard we mean that these program
written in C and use the lower-level approach of calling the Windows Ap
cation Programming Interface (API) directly. Such programs are said to
developed with the System Developer Kit (SDK). This contrasts with the n
chapter which describes development of Windows programs using C++
the Microsoft Foundation Classes. The SDK is in some sense the hard way to
do Windows programming but it is also the most basic and flexible way
build a Windows program and most of the commercial Windows applicatio
you will encounter have been written in the following fashion.

Microsoft Development Tools

The interfacing examples of these next few chapters assume that you h
access to certain Windows development tools. While much of what we
describe is generic to a selection of compilers and programming environ
ments, we have specifically used Microsoft’s tools in all of our examples
Thus, this chapter and the next make use of the C and C++ compilers o
Microsoft Visual C++, version 4.0, for 32-bit development. We have used
this compiler for HyperChem Release 5.0. The information needed to in
face your program to HyperChem is fundamentally independent of the s
cific Windows tools used, but there may be small changes necessary to a
to your specific tool set if you are not using Visual C++ 4.0.

Programming Assistance

This manual is certainly not a programming manual for Windows but you
may need one. With the entering of any new area of endeavor, it is comfo
to have the right information and assistance from experts. If you are new
157

A First Example

m-

nce

 this
an
 we
for

r than
nd
 so-

r
++

em-
you

pro-

ple

ory
ual
rst
hap-
our
the type of programming illustrated in this chapter, we very strongly reco
mend that you get a copy of the following book,

Programming Windows

Charles Petzold and Paul Yao

ISBN 1-55615-676-6

Microsoft Press, 1996

This is a new version of the programming classic by Charles Petzold. Si
Windows NT programming is very similar to that for Windows 95, it is an
appropriate book for NT development as well. There is an assumption in
manual that you are probably a UNIX programmer. The Petzold book is
excellent way for you to approach programming for Windows and NT and
highly recommend it. A great deal has been written about programming
Windows and there exist other fine reference books as well.

Language

This chapter uses the C language and the next chapter uses C++, rathe
Fortran, which is generally much more familiar to scientific programmers a
may be your language of choice. In Chapter 14 we describe how to write
called console programs in Fortran that can be interfaced to HyperChem.
However, for writing a normal Windows program that has a graphical use
interface, visualization, etc., Fortran is somewhat problematic and C or C
are much to be preferred for normal Windows programming. With the Ch
ist’s Developer Kit, C, C++, and VB are the languages that we anticipate
will be using for true “Windows-like” development. Any of the four lan-
guages, C, C++, VB, and Fortran are appropriate for the “character-like”
gramming common to most large computational chemistry modules.

A First Example

The first programming example will again be our “Red and Green” exam
which is the equivalent in this manual to the common “Hello World” pro-
gramming examples that you probably have seen elsewhere.

This example is referred to as Colors and will be in its own Colors direct
from the HyperChem CD-ROM. It is assumed that you have installed Vis
C++ 4.0 and that you are working from a DOS box in Windows 95. The fi
thing that you must do, as with other programming examples from this c
ter, is to go to the proper directory and execute MSC.BAT to configure y
environment for the Microsoft compiler.
158 Chapter 12

A First Example

he
n-

d

xe-
,

ill
the

dow
l
es-

1. Change to the COLORS directory

2. Type MSC.BAT

If you have any trouble with running out of environment space, click on t
Properties tool in the DOS-box tool bar to increase the amount of enviro
ment memory. You are now ready to compile the COLORS.C file and create
the executable. Type NMAKE. You should see your program being compile
and the executable COLORS.EXE being created. Make sure HyperChem is
running and then execute COLORS.EXE. That is,

3. Type NMAKE

4. Make sure HyperChem is running

5. Type COLORS to execute COLORS.EXE

You could do this last step by typing COLORS in your DOS box or by double
clicking on the Colors icon inside the Explorer or by having HyperChem e
cute the script COLORS.SCR which simply has in it the Hcl script command
execute-HyperChem-client colors.exe. You should then see the following
Windows Application on the screen:

If you push the Red button, the HyperChem background window color w
turn red. If you push the Green button, it will turn green. The text above
buttons indicates the current color of the HyperChem window, if its last
change came from the external application, Colors. If you change the win
from the <File/Preferences...> dialog box within HyperChem, the externa
application will not know about the change (a notification operation is nec
sary for this).

The code for this Windows application is shown below. It is a completely
standard “boiler-plate” windows code except for the text shown in bold.
Development Using the Windows API 159

A First Example
/*

Window Colors - SDK program to connect and talk to HyperChem

*/

#include <windows.h>

#include "hc.h"
char cmd_line[120];
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

 PSTR szCmdLine, int iCmdShow)

{

static char szAppName[] = "Colors" ;
HWND hwnd ;

MSG msg ;

WNDCLASSEX wndclass ;

int windowx,windowy;
wndclass.cbSize = sizeof (wndclass) ;

wndclass.style = CS_HREDRAW | CS_VREDRAW ;

wndclass.lpfnWndProc = WndProc ;

wndclass.cbClsExtra = 0 ;

wndclass.cbWndExtra = 0 ;

wndclass.hInstance = hInstance ;

wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;

wndclass.lpszMenuName = NULL ;

wndclass.lpszClassName = szAppName ;

wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;

RegisterClassEx (&wndclass) ;

lstrcpy(cmd_line,szCmdLine);
windowx=200;
windowy=175;
hwnd = CreateWindow (szAppName, "Colors",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT,

windowx,
windowy,
NULL, NULL, hInstance, NULL) ;

ShowWindow (hwnd, iCmdShow) ;

UpdateWindow (hwnd) ;

while (GetMessage (&msg, NULL, 0, 0))

{

 TranslateMessage (&msg) ;

 DispatchMessage (&msg) ;
160 Chapter 12

A First Example
 }

 return msg.wParam ;

 }

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,

 LPARAM lParam)

{

static HWND hwndButton[2] ;
static RECT rect ;

static int cxChar, cyChar ;

HDC hdc ;

PAINTSTRUCT ps ;

TEXTMETRIC tm ;

static char szBuff[200], szInitColor[50];
char *response;
int result;
static int connected=FALSE;
switch (iMsg)

{

case WM_CREATE :

hdc = GetDC (hwnd) ;

SelectObject (hdc,GetStockObject(SYSTEM_FIXED_FONT));

GetTextMetrics (hdc, &tm) ;

cxChar = tm.tmAveCharWidth ;

cyChar = tm.tmHeight + tm.tmExternalLeading ;

ReleaseDC (hwnd, hdc) ;

hwndButton[0]=CreateWindow("button","Red",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
7*cxChar, 3*cyChar, 10*cxChar, 2*cyChar,
hwnd, (HMENU)0,
((LPCREATESTRUCT) lParam) -> hInstance,
NULL) ;

hwndButton[1]=CreateWindow("button","Green",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
7*cxChar, 6*cyChar, 10*cxChar, 2*cyChar,
hwnd,(HMENU)1,
((LPCREATESTRUCT) lParam) -> hInstance,
NULL) ;

return 0;

caseWM_SHOWWINDOW :

if (!connected)
{

Development Using the Windows API 161

A First Example
/* loading CDK API DLL */
if (!LoadHAPI("hapi.dll"))
{
MessageBox(hwnd,"Error loading CDK's API DLL !",

"Error", MB_OK | MB_ICONSTOP);
exit(0);
}
/* connecting to HyperChem */
if (!hcConnect(cmd_line))
{
MessageBox(hwnd,"Error connecting with HyperChem !",

"Error", MB_OK | MB_ICONSTOP);
exit(0);
}
else
{
connected=TRUE;
}
/* obtaining initial window-color from HyperChem */
response=hcQueryTxt("window-color");
lstrcpy(szInitColor,response);
hcFree(response);
wsprintf(szBuff,"%s",szInitColor);
}
return 0;

case WM_PAINT :

 InvalidateRect (hwnd, &rect, TRUE) ;

 hdc = BeginPaint (hwnd, &ps) ;

 SelectObject(hdc,GetStockObject(SYSTEM_FIXED_FONT));

 SetBkMode (hdc, TRANSPARENT) ;

 TextOut(hdc,cxChar,cyChar,szBuff,lstrlen(szBuff)) ;

 EndPaint (hwnd, &ps) ;

 return 0 ;

case WM_DRAWITEM :

case WM_COMMAND :

hdc = GetDC (hwnd) ;

SelectObject(hdc,GetStockObject(SYSTEM_FIXED_FONT));

switch (LOWORD (wParam)) {

case 0 :
wsprintf(szBuff,"window-color = Red");
result=hcExecTxt(szBuff);
162 Chapter 12

Modification of a Molecule’s Coordinates

ll

mal
 the

his is
ts
pro-

ery

er-
yper-
is
am-
break;
case 1 :

wsprintf(szBuff,"window-color = Green");
result=hcExecTxt(szBuff);
break;

default : ;

}

/*TextOut (hdc, cxChar, cyChar,

 szBuff,lstrlen(szBuff));*/

ReleaseDC (hwnd, hdc) ;

InvalidateRect (hwnd, NULL, TRUE) ;

break ;

case WM_DESTROY :

result=hcExecTxt(szInitColor);
result=hcDisconnect();
PostQuitMessage (0) ;

return 0 ;

}

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

}

The changes to a standard version of the WinMain routine, as used by a
Windows programs, are very minimal. the only changes are to include a
header file, hc.h, to change the size of the window to a smaller than nor
value, to save the invoking command line for potential use, and to change
name of the main window to Colors.

The changes to WndProc, the callback procedure, are more extensive. T
the routine that contains the code you get to execute when certain even
occur. It is, of course, very application dependent although all Windows
grams have a similar basic outline.

Modification of a Molecule’s Coordinates

The next example that we demonstrate and explain is one which has a v
fundamental capability similar to many programs that you might wish to
write. That is, this program gets a molecule and its coordinates from Hyp
Chem, modifies these coordinates in some fashion and returns them to H
Chem for continuous display. A more elaborate example might extend th
program to perform a geometry optimization, to execute a molecular dyn
Development Using the Windows API 163

Modification of a Molecule’s Coordinates

ws
ics, trajectory, etc. Once again the modifications from a standard Windo
program are denoted in bold face type.

/*

* C-API Examples***

 * Rotation - program to demonstrate *

 * modification of coordinates in the HyperChem workspace *

**

*/

#include <windows.h>

#include <math.h>

#include <stdio.h>

#include "hc.h"
#include "hsv.h"
char cmd_line[100];
static char *Label[] = {"Step Size",

"Total Steps"};
#define _CW(l) cxChar*(lstrlen(l)+1)
#define MAX_BUFF 200
typedef struct _ATM_COORDS { double x,y,z; } ATM_COORDS;
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

 PSTR szCmdLine, int iCmdShow)

{

static char szAppName[] = "Rotate" ;
HWND hwnd ;

MSG msg ;

WNDCLASSEX wndclass ;

int windowx,windowy;

wndclass.cbSize = sizeof (wndclass) ;

wndclass.style = CS_HREDRAW | CS_VREDRAW ;

wndclass.lpfnWndProc = WndProc ;

wndclass.cbClsExtra = 0 ;

wndclass.cbWndExtra = 0 ;

wndclass.hInstance = hInstance ;

wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

wndclass.hbrBackground=(HBRUSH)GetStockObject(COLOR_BACKGROUND);

wndclass.lpszMenuName = NULL ;

wndclass.lpszClassName = szAppName ;

wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;

RegisterClassEx (&wndclass) ;

lstrcpy(cmd_line,szCmdLine);
164 Chapter 12

Modification of a Molecule’s Coordinates
windowx=280;
windowy=200;
hwnd = CreateWindow (szAppName, "Rotate",

WS_OVERLAPPEDWINDOW,

CW_USEDEFAULT, CW_USEDEFAULT,

windowx,
windowy,
NULL, NULL, hInstance, NULL) ;

ShowWindow (hwnd, iCmdShow) ;

UpdateWindow (hwnd) ;

while (GetMessage (&msg, NULL, 0, 0))

{

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;

}

return msg.wParam ;

}

LRESULT CALLBACK WndProc(HWND hwnd,UINT iMsg,

WPARAM wParam,LPARAM lParam)

{

static HWND hwndButton[1],hwndLabel[2],hwndEdit[2] ;
static RECT rect ;

static int cxChar, cyChar ;

HDC hdc ;

TEXTMETRIC tm ;

HINSTANCE hins;

static char szBuff[MAX_BUFF],szInitColor[50];
int result,i;
static int connected=FALSE;
static ATM_COORDS *org_xyz,*new_xyz;
static int nMol,*nAtm,nAtmTot;
double dRot,rAng,rCos,rSin;
int nRot,ia;

switch (iMsg)

{

case WM_CREATE :

hdc = GetDC (hwnd) ;

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

GetTextMetrics (hdc, &tm) ;

cxChar = tm.tmAveCharWidth ;

cyChar = tm.tmHeight + tm.tmExternalLeading ;
Development Using the Windows API 165

Modification of a Molecule’s Coordinates
ReleaseDC (hwnd, hdc) ;

hins=((LPCREATESTRUCT) lParam) -> hInstance;

hwndLabel[0]=CreateWindow("static",
Label[0],
WS_CHILD | WS_VISIBLE,

2*cxChar,
3*cyChar,
_CW(Label[0]),
2*cyChar,
hwnd,(HMENU)101, hins, NULL);

hwndEdit[0]=CreateWindow("edit",
NULL,

WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT,

2*cxChar,
(int)(4.5*cyChar),
10*cxChar,
7*cyChar/4,
hwnd,

(HMENU)200 ,hins, NULL);
hwndLabel[1]=CreateWindow("static",

Label[1],
WS_CHILD | WS_VISIBLE,

22*cxChar,
3*cyChar,
_CW(Label[1]),
2*cyChar,
hwnd,(HMENU)102, hins, NULL);

hwndEdit[1]=CreateWindow("edit",
NULL,

WS_CHILD | WS_VISIBLE | WS_BORDER | ES_LEFT,

22*cxChar,
(int)(4.5*cyChar),
10*cxChar,
7*cyChar/4,
hwnd,(HMENU)201 ,hins, NULL);

hwndButton[0]=CreateWindow("button",
"Spin it !",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

12*cxChar,
(int)(8.5*cyChar),

10*cxChar,
7*cyChar/4,
166 Chapter 12

Modification of a Molecule’s Coordinates
hwnd,(HMENU)0,hins, NULL) ;

return 0;

case WM_SHOWWINDOW :

if (!connected) {
/* loading CDK API DLL */
if (!LoadHAPI("hapi.dll")) {
MessageBox(hwnd,

"Error loading CDK's API DLL !",
 "Error", MB_OK | MB_ICONSTOP);

exit(0);
}

/* connecting to HyperChem */
if (!hcConnect(cmd_line)) {

MessageBox(hwnd,
"Error while connecting with HyperChem !",
 "Error", MB_OK | MB_ICONSTOP);

exit(0);
} else {
connected=TRUE;
}

/* obtaining coordinates from HyperChem */
nMol=hcGetInt(molecule_count); // getting number of molecules
if (nMol < 1) {

MessageBox(hwnd,
"There are no molecules to play with !",
 "Error", MB_OK | MB_ICONSTOP);
hcDisconnect();
exit(0);
};

nAtm=(int*)hcAlloc(nMol*sizeof(int));
// getting vector specifing number of atoms in each

// molecule
if (!nAtm) {

MessageBox(hwnd,
"Memory allocation error",
"Error", MB_OK | MB_ICONSTOP);

hcDisconnect();
exit(0);
};

if (!hcGetIntVec(atom_count,nAtm,nMol)) {
MessageBox(hwnd,
Development Using the Windows API 167

Modification of a Molecule’s Coordinates
"Error while getting data from HyperChem !",
"Error", MB_OK | MB_ICONSTOP);

hcDisconnect();
exit(0);
};

nAtmTot=0;
for (i=0;i<nMol;i++) nAtmTot += nAtm[i];
org_xyz=(ATM_COORDS*)hcAlloc(nAtmTot*sizeof(ATM_COORDS));
new_xyz=(ATM_COORDS*)hcAlloc(nAtmTot*sizeof(ATM_COORDS));
if ((!org_xyz) || (!new_xyz)) {

MessageBox(hwnd,
"Memory allocation error",
"Error", MB_OK | MB_ICONSTOP);

hcDisconnect();
exit(0);
};

if (!hcGetRealArr(coordinates,
(double*)org_xyz,nAtmTot*3)) {

MessageBox(hwnd,
"Error getting atomic coordinates",
"Error", MB_OK | MB_ICONSTOP);

hcDisconnect();
exit(0);
};

 }
SetWindowText(hwndEdit[0],"12");
// default step for rotation
SetWindowText(hwndEdit[1],"30");
// default number of rotations

return 0;

case WM_COMMAND :

hdc = GetDC (hwnd) ;

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

switch (LOWORD (wParam)) {

case 0 :// ROTATE
EnableWindow(hwndButton[0], FALSE);
GetWindowText(hwndEdit[0],szBuff,MAX_BUFF);
dRot=atof(szBuff);
GetWindowText(hwndEdit[1],szBuff,MAX_BUFF);
nRot=atoi(szBuff);
168 Chapter 12

Modification of a Molecule’s Coordinates
dRot = dRot*3.14159256/180.0;
result=hcSetInt(cancel_menu,1);

for (i=0;i<nRot;i++) {
rAng=dRot*(i+1);
rSin = sin(rAng);
rCos = cos(rAng);
for (ia=0;ia<nAtmTot;ia++) {

new_xyz[ia].x = rCos * org_xyz[ia].x
+ rSin * org_xyz[ia].y;

new_xyz[ia].y =-rSin * org_xyz[ia].x
+ rCos * org_xyz[ia].y;

new_xyz[ia].z=org_xyz[ia].z;
}

result=hcSetRealArr(coordinates,
(double*)new_xyz,nAtmTot*3);

if (!hcGetInt(cancel_menu)) {
result=hcSetRealArr(coordinates,

(double*)org_xyz,nAtmTot*3);
hcDisconnect();
PostQuitMessage(0);
break;
}

}
result=hcSetInt(cancel_menu,0);
EnableWindow(hwndButton[0], TRUE);

break;
default : ;

}

 ReleaseDC (hwnd, hdc) ;

 ValidateRect (hwnd, &rect) ;

 break ;

case WM_DESTROY :

result=hcDisconnect();
PostQuitMessage (0) ;

return 0 ;

 }

 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

 }
Development Using the Windows API 169

Modification of a Molecule’s Coordinates

in-

 the
nc-
ate

ve

will
r
Executing this program (after invoking HyperChem) gives the following w
dow:

Pushing the button will rotate the molecule by 12 degrees 30 times with
above parameters. In conjunction with this program the Cancel button fu
tions appropriately. Pushing it will terminate the rotation and also termin
the rotate program.

If you are new to programming for Windows and NT, you should now ha
the basis for going on and beginning to build real Windows applications.
However, development with the MFC, as described in the next chapter,
make your life much easier if you wish to develop serious graphical use
interfaces.
170 Chapter 12

 the

ter-
pro-

ter is
his
in a
nt
part

ols
cial
s it

 to
ing
hin
our-

vel-
-

Chapter 13

Development Using the MFC

Introduction

This chapter describes the development of C++ Windows programs using
Microsoft Foundation Classes (MFC). We describe very briefly how to
develop Windows applications of this kind and then how to have them in
face and exchange data with HyperChem programs. Examples of such
grams are given.

Microsoft Development Tools

Once again, the appropriate development tool associated with this chap
Microsoft Visual C++ which includes the Microsoft Foundation Classes. T
set of C++ classes allow you to build a Windows graphical user interface
very short period of time. The combination of the Integrated Developme
Environment (IDE), the C++ compiler, and the MFC classes, that are all
of Visual C++ 4.0 make for a powerful development tool. One can very
quickly put together a Windows application, much faster than with the to
of the last chapter. It is still the case, however, that most of the commer
software, even that from Microsoft, does not yet use the MFC. As easy a
is, it does not provide quite the flexibility that making all your own lower-
level API calls does, as in the SDK-style. In addition, it is still necessary
have a good appreciation of the Windows API, even if you are programm
with the MFC. Indeed, the API calls are required for many things even wit
the higher level approach briefly described here. You should decide for y
self whether programming in C with direct API calls (Chapter 12) or pro-
gramming in C++ with the MFC (this chapter) is for you.

Programming Assistance

As stated before, this cannot be a programming manual for Windows de
opment. We will illustrate the basic ideas for building Windows MFC pro
171

A First Example

t a
ces.
ed
vel-

th

cess
ject

and

 you
m-
kes
ual
el-
s

An
est-

e a
ring
grams that interface to HyperChem and provide some example code bu
serious approach to this subject requires you to obtain additional resour
The first, of course, is Microsoft Visual C++ 4.0 itself. The ideas discuss
here can certainly be implemented with other compilers and with other de
opment environments, but you will have to make some adaptation of the
descriptions given here. We will not attempt to describe development wi
alternative tools.

The second requirement, if you are new to Windows development, is ac
to good documentation and tutorial material. One recent book on the sub
from Microsoft is,

Programming Windows 95 with MFC

Jeff Proise

Microsoft Press, 1996

ISBN 1-55615-902-1

There are many other books that describe development using the MFC
Visual C++ 4.0 on the market, as well.

Language

The C++ language of this chapter may be new to you. If this is the case
may need programming books and tools that specifically address progra
ming in this language. In many ways the object-oriented flavor of C++ ma
it more different from C, than C even is from Fortran. An advantage of Vis
C++ and its Wizards is that very little code will need to be written for dev
opment of the GUI and you will be able to develop significant application
just writing C code for the chemical computation part of your application.
investment in learning C++ programming is probably a well-rewarded inv
ment.

A First Example

The first example of a C++ program that interfaces to HyperChem will b
simple one to illustrate the basic tools and concepts of Visual C++ 4.0. B
up the Visual C++ program until it looks similar to the following:
172 Chapter 13

A First Example

our
Then,

1. Select <File/New...>

This will bring up a dialog box to select a Wizard to assist you in creating y
application,

It is simplest to use the MFC AppWizard to create your application.
Development Using the MFC 173

A First Example

gle
cu-
at
e

.

ou
uced.

xt>.

n.

ill
.

log
ain
r to

d to
 two

ia-
2. Type in a name for your application and hit <Create>.

You now are required to decide whether your application is a normal sin
document application with a menu bar, tool bar, etc., a corresponding do
ment with a multiple document interface (MDI) or a simpler application th
is essentially just a single dialog box. For this first application, choose th
simpler approach.

3. Choose <Dialog based> and hit <Next>.

You are now asked to elaborate a little on the features of this dialog box

4. Choose <About box> and <3D-controls> before hitting <Next>.

It is appropriate to choose a shared Dynamic Link Library for MFC and y
can should comments that may assist you in understanding the files prod

5. Choose <As a Shared DLL> and <Yes, Please> prior to hitting <Ne

You can now complete the process of creating your first MFC applicatio

6. Choose <Finish> and <OK> to complete the AppWizard’s work.

You are now left with an application that can be compiled and run but it w
not do anything of significance yet or be able to interact with HyperChem

Modifications

To create a custom application, we want to modify the widgets on the dia
box and create code for the modified ones. Specifically, we are once ag
going to create two buttons - one to change the HyperChem screen colo
red and one to change it to green. To accomplish this, we first of all nee
modify the existing resources and create two new resources that are the
new buttons.

1. Click on the <ResourceView> tab at the bottom of the left window.

2. Double click on <IDD_CPPCOLOR_DIALOG> to place the current d
log box in the right window as shown below:
174 Chapter 13

A First Example

bel.

 it.

But-
 by
You will now want to delete the OK and Cancel buttons and the TODO la

3. Click on <OK> to select the button and then <File/Delete> to delete

4. Repeat for the Cancel button.

5. Repeat for the TODO label.

You can now add whatever widgets you like to the dialog box. Select the
ton control from the set of Controls and create a button on the dialog box
dragging with the mouse until you get the following:
Development Using the MFC 175

A First Example

 clip-

.

 it

ed to
tons.
That is,

6. Create a Button on the dialog box.

To create a second button select the first one shown above, copy it to the
board and then paste it back,

7. Copy and Paste the Button to create a second one.

You can now double click on each button in turn to modify its properties

8. Double click on the first button to change its name to IDC_RED and
Caption to Red.

9. Repeat for the second Green button.

The buttons should now be labelled Red and Green. To continue, we ne
invoke the Class Wizard to allow us to create specific code for these but
176 Chapter 13

A First Example

ld
ed
10. Select the menu item <View/Class Wizard...>

You should see the following:

11. Select <IDC_RED> and <IDC_GREEN> in turn with the Message fie
as <BN_CLICKED> and hit <Add Function> to create functions OnR
and OnGreen.

Next you need to add code for these functions, so,

12. Hit <Edit Code> and type in the correct code for each button.

The appropriate code to add is:

void CCppColorDlg::OnRed()

{

// TODO: Add your control notification handler code here

hcExecTxt ("window-color red");
}

13. Repeat steps 11 and 12 for the green button.

void CCppColorDlg::OnGreen()

{

// TODO: Add your control notification handler code here

hcExecTxt ("window-color green");
}

Development Using the MFC 177

A First Example

g
ow-
dd
c
ake

e
tion
the
look
er-

e
This completes the use of the AppWizard and Control Wizard for creatin
this application. There are still a couple of things that have to be done, h
ever, before this code will compile and run correctly. The first task is to a
our include files to the set of includes. The second task is to load the dynami
link library so that the function hcExec can be found. Finally we have to m
a connection between this program and HyperChem.

The MFC application includes a number of files, all of which are machin
generated. In this case CColor.cpp is really identical to a generic applica
and no changes to it are necessary. The CColorDlg.cpp file contains all
code associated with the dialog box and we need to modify this code. To
at code you select the <FileView> tab of the left window, find the file of int
est and double click on it. This will give you a view of CColorDlg.cpp as
below:

Included Files

At the beginning of the above file the following bold-faced code should b
added to the include files already there:

// CppColorDlg.cpp : implementation file

//

#include "stdafx.h"
178 Chapter 13

A First Example

hem.

tab-

z-

u

s
per-
s as
#include "CppColor.h"

#include "CppColorDlg.h"

#include �hc.h�
#include �hcload.c�

These are the include files that are needed to communicate with HyperC
If you are making library calls, e.g. hcExecBin, you will need hsv.h also.

Dynamic Link Library and Connecting to HyperChem

The code that is needed to initialize the loading of the HAPI.DLL and es
lish the connection to HyperChem should be placed in the OnInitDialog rou-
tine inside CColorDlg.cpp after the appropriate place where the AppWi
ard tells you it should go,

SetIcon(m_hIcon, TRUE);// Set big icon

SetIcon(m_hIcon, FALSE);// Set small icon

// TODO: Add extra initialization here

if (!LoadHAPI("hapi.dll"))
{

MessageBox("Error loading HAPI.DLL", Error",
MB_OK|MB_ICONSTOP);

exit(0);
}
if (!hcConnect(NULL)))

MessageBox("Error connecting to HyperChem", "Error",
MB_OK|MB_ICONSTOP);

return TRUE; // return TRUE unless you set the focus to a control

This completes the first simple example. If everything went correctly, yo
should have created a Windows application that can talk to and control
HyperChem. Remember that the code we have put into the new Window
application expects HyperChem to be there so that you need to start Hy
Chem before starting the new application. The CppColor application look
follows:
Development Using the MFC 179

Cavity

 the
nt
-
lcu-
 an

f the

re
ade
M.
Cavity

This next example, called Cavity, is considerably more sophisticated than
last example. It is still a simple Dialog application but it collects significa
information from HyperChem - the current selections, the current coordi
nates, plus it collects the values of quantities in the dialog box before ca
lating the center of mass of the selection. The application can then place
atom of arbitrary atomic number at the center of mass of the “cavity” and
draw special dotted bonds between the center of the cavity and the rest o
molecule. It is essentially identical to the last example except for the mo
sophisticated interactions with HyperChem and the inclusion of entries m
in the dialog box. The code for this example is on the HyperChem CD-RO
The dialog box is shown below,
180 Chapter 13

Cavity

ted,
ple
xt-
or-

n
re
e sys-
This application is too long to discuss all the code here. If you are interes
however, you should be able to follow every aspect of this relatively sim
calculation using the full source code. All the calls in this program are te
based calls with no binary call that need hsv.h. We will discuss certain p
tions of the code as being instructive of how one generally interacts with
HyperChem. The code, OnCalc, associated with pushing the Calculate butto
is where the coordinates are read. The first thing that is necessary, befo
reading the coordinates, is to characterize the atoms and molecules of th
tem in HyperChem,

// HyperChem won't send tags with OMSGS

hcExecTxt("query-response-has-tag = false");
// Gather information about molecular system

// start with number of molecules

resp=hcQueryTxt("molecule-count");
iMol=atoi(resp);hcFree(resp);
// allocate memory for iaAtomCount array

iaAtomCount=(int*)calloc(iMol,sizeof(int));

// next, get count of atom in each molecule

resp=hcQueryTxt("atom-count");
// parse string returned by CDK into integer array
Development Using the MFC 181

Cavity

te
t the

mat-

o-

 turn
then
lt of

ed
ult in
lus
. The
or
The
pstr=resp;

i=0;iAtomTot=0;

while (ptok=strtok(pstr,_DELIMITERS)) {

if (pstr) pstr=NULL;

iAtomTot += iaAtomCount[i++]=atoi(ptok);

}

hcFree(resp);

As with many interfaces to HyperChem, the first thing to do is to elimina
the tag which comes, by default, with a returning message. Next, we ge
number of molecules, molecule-count, which comes in as a string and gets
converted to an integer. The memory allocation for the string occurs auto
ically within hcQueryTxt and this memory must be freed by you when the
string is no longer needed. Forgetting to free memory is a common C pr
gramming error.

The HSV, atom-count, is a vector. Each element could have been read in
but all the elements can also be read at once - the resulting string must
be parsed, however. The vector , iaAtomCount, is used to hold the resu
this parsing.

The next step is to sort out which of the atoms and molecules are select
since we are only going to read the selected atoms coordinates. This res
vectors iaSelectedAtom and iaSelectedMol being allocated and filled in, p
a variable, iSelected, that represents the total number of atoms selected
code for this can be inspected in the source files if you wish. We skip it f
brevity. The next step is to read the coordinates for the selected atoms.
code for this is,

// get coordinates of atoms

faX=(float*)calloc(iSelected,sizeof(float));

faY=(float*)calloc(iSelected,sizeof(float));

faZ=(float*)calloc(iSelected,sizeof(float));

for (is=0;is<iSelected;is++) {

wsprintf(buff,"coordinates(%d,%d)",

iaSelectedAtom[is],iaSelectedMol[is]);

resp=hcQueryTxt(buff);
pstr=resp;

i=0;in=0;

while (ptok=strtok(pstr,_DELIMITERS)) {

if (pstr) pstr=NULL;

switch (in) {
182 Chapter 13

Cavity

at
hree

case 0: x=(float)atof(ptok); in++; break;

case 1: y=(float)atof(ptok); in++; break;

case 2: z=(float)atof(ptok); in=0; break;

}

}

hcFree(resp);
faX[is] = x;

faY[is] = y;

faZ[is] = z;

}

The loop over selected atoms makes a request for the coordinates of th
atom, as an element of the coordinate array. This element is a string of t
values (x, y, and x coordinates) and has to be parsed.

The code for the remaining portions of this problem is available for your
inspection, if you are interested.
Development Using the MFC 183

Cavity
184 Chapter 13

 or
em.

op
 no

For
wave
rte-

ffi-
e

hed
. The
 to
itals.
char-
r it

sole
 is
Chapter 14

Console C and Fortran Applications

Introduction

This chapter describes how to develop “conventional” character-oriented
console applications in C or Fortran that can be interfaced with HyperCh

It is relatively common in computational or theoretical chemistry to devel
applications in Fortran (or as is becoming more common, in C) that have
graphical user interface but operate with input files creating output files.
example, many programs have been developed to calculate a molecular
function. Such a program in its simplest form might need as input the Ca
sian coordinates of a molecule and give as output the energies and coe
cients describing the molecular orbitals. It is a significant effort to build th
additional graphics program that would allow the molecule to be just sketc
and the output to be presented as a 3D rendering of the molecular orbitals
CDK, however allows the developer of such a molecular orbital program
use HyperChem to sketch the molecule and to render the molecular orb
HyperChem can act as a front end GUI and a back end visualizer to this
acter-oriented program by simply having it call on HyperChem wheneve
needs graphical services.

Console Applications

Microsoft refers to programs that have no graphical user interface as con
applications. An example output from one of these console applications
shown below.
185

Introduction

s
ole

0
hi-

ts

ls
uc-
in-
d

upon
or-
re
oft
l we
 in
a-
ter-
These applications look a lot like many UNIX applications or application
developed in DOS. Until recently it was very difficult to develop such cons
programs within the Windows environment, i.e. without a window and a
graphical user interface. Now with Windows 95 or NT and Visual C++ 4.
and Fortran Power Station it is relatively easy to port traditional non-grap
cal scientific applications to the Windows environment. With the Chemis
Developer Kit, it is also easy to interface these to HyperChem.

C or Fortran

Until recently, the Microsoft Windows environment and development too
have essentially been usable only with C (or C++). With the recent introd
tion of Fortran PowerStation, however, it has become easy to develop W
dows applications in Fortran. For console applications, the tools for C an
Fortran are essentially on the same basis and the choice can be based
which language is your personal choice. For more graphical programs, F
tran (which requires calls to the Windows API - developed for C) is still mo
awkward to use than C. It is still possible, however, using tools that Micros
has provided with Fortran PowerStation. In this chapter and in this manua
will not concern ourselves with development of graphical user interfaces
Fortran. Rather, we restrict our Fortran discussions to the console applic
tions of this chapter. For such console applications, C and Fortran are in
changeable as to their ease of use within Windows.
186 Chapter 14

C Program

an
p-

ated,

lly as

ks
s:
The Integrated Development Environment

The Visual C++ 4.0 Integrated Development Environment is where Fortr
PowerStation programs are developed and this gives an identical develo
ment environment for both C and Fortran. Thus a console program is cre
as before, by selecting <File/New>, choosing to create a new Project Work-
space and then selecting a Console Application,

For console applications, one has to Insert C (*.c), C++ (*.cpp), or Fortran
(*.f) files into the project as needed since none are generated automatica
with the AppWizard.

C Program

Our first example of a console program is a C program. The program loo
like any C program beginning with main(), etc. The code for it is as follow

/*

 * Console - UNIX like C program that talks to HyperChem *

 */

#include <stdio.h>

#include <windows.h>

#include "hc.h"
#include "hcload.c"
int main(int iArg, char **pArg)

{

char cmd_line[100],initColor[100],color[100],buffer[100];
Console C and Fortran Applications 187

C Program

ine
d

er-
n-
char *response;

int result;

/* loading HAPI.DLL */

 if (!LoadHAPI("hapi.dll")) {
printf("Error loading HAPI.DLL !\n");

exit(0);

};

/* connecting to HyperChem */

if (iArg!=2) {

strcpy(cmd_line,"");

} else {

strcpy(cmd_line,pArg[1]);

};

if (!hcConnect(cmd_line)) {
printf("Error while connecting with HyperChem !\n");

exit(0);

}

/* obtain initial window-color from HyperChem */

response=hcQueryTxt("window-color");
printf("initial state = %s\n",response);

strcpy(initColor,response);

hcFree(response);

for(;;) {

printf("Choose window-color (black, green, red ... (-1 to end))\n");

scanf("%s",color);

if (atoi(color) == -1) {

result=hcExecTxt(initColor);
result=hcDisconnect();
return 0 ;

} else {

sprintf(buffer,"window-color %s",color);

result=hcExecTxt(buffer);
}

}

return 0;

This code looks like any simple C program with the exception of calls to
hcConnect, hcQueryTxt, hcExecTxt, and hcDisconnect. Any command l
arguments are passed through to HyperChem. The header files, hc.h an
hcload.c are required as is the dynamic loading of the library of the Hyp
Chem Application Programming Interface, HAPI.DLL. Subsequent to co
188 Chapter 14

Fortran Programs

per-
s
ng

lors
ram
ed,

the
ten-

-
CDK

s,
nge
r
ck”
necting to HyperChem, the program can just read and write HSV’s to Hy
Chem or control HyperChem via direct commands. The program require
HyperChem to be running prior to its own invocation. The result of runni
this program is the following Console window.

The corresponding HyperChem window with its changing background co
is not shown. The console window contains any text that a normal C prog
outputs via “standard output” using printf, etc. It can be iconized, if desir
so that it is effectively running in the background while you interact with
HyperChem. It behaves very much like HyperNewton, HyperNDO, etc.,
standard back ends that come with HyperChem and perform compute in
sive computations.

Fortran Programs

We will now illustrate, in somewhat more detail, examples of Fortran pro
grams that behave like the above. It is believed that HyperChem and the
provide an ideal opportunity to interface a wide variety of Fortran program
such as could be available from the Quantum Chemistry Program Excha
(QCPE) at Indiana University. Many programs have been generated ove
many years, by many chemists, and these could very quickly have a “sli
graphical user interface.
Console C and Fortran Applications 189

Fortran Programs

 the
oor-

we
ral
ol-

 the

-

e
Reflect

Our first example is a program that simply collects the coordinates of all
atoms from HyperChem, performs some simple transformation of these c
dinates, and sends them back to HyperChem for display. For simplicity
will use a reflection in the XY plane through the origin to illustrate the gene
process. That is, our program will replace all Z coordinates by -Z. If your m
ecule has chiral centers and their chirality label is displayed, you will see
conversions R->S and S->R from running this program.

This example, while trivial, has some of the characteristics of a “real” pro
gram that would perform significant computation on an “initial” structure
leading to a “new” structure. Molecular dynamics programs or a structur
optimization programs have this flavor. The whole program is,

program Reflect

c--

c include header files - HAPI definitions and declarations

include 'hc.fi'
include 'hsv.fi'
parameter (nDimensions=3)

parameter (nMaxAtoms=2000)

character*60 cmd_line

logical result

integer status

integer nAtoms

double precision XYZ(nDimensions, nMaxAtoms)

c

c Connect to HyperChem using current command line

c

call getarg(1,cmd_line,status)

result=hfConnect(cmd_line)
if (.NOT. result) stop

c we do not want to have names in front of HSVs !

c query-response-has-tag=false does this for us

result=hfExecTxt("query-response-has-tag=false")

write(*,*)'Reflection Example'

c call subroutines to read in initial atom coordinates
190 Chapter 14

Fortran Programs
c and write final atom coordinates

call GetCoords(XYZ, nDimensions, nMaxAtoms, nAtoms)

call PutCoords(XYZ, nDimensions, nMaxAtoms, nAtoms)

end

subroutine GetCoords(coords,nDim,nMaxAt,nAt)

c--

c gets xyz coordinetes of all atoms in the system

c and stores them in 'coords' array

c--

c include HAPI definitions and declarations

include 'hc.fi'
include 'hsv.fi'

double precision coords(nDim,nMaxAt)

c get number of molecules from HyperChem (integer value)

c using hfGetInt "binary" function

nMol=hfGetInt(molecule_count)

c get total number of atoms by scanning all molecules

nAt=0

do 1 i=1,nMol

c get number of atoms in the molecule

c hfGetIntVecElm is "binary" function ("atom_count" is Integer Vector)

iatoms=hfGetIntVecElm(atom_count,i)
nAt=nAt+iatoms

1 continue

write(*,*)'There are ',nAt,' atoms in ',nMol,' molecules'

c get xyz coordinates of all atoms and place them into 'coords' array

c using hfGetRealArr "binary" function ("coordinates" is Real Array)

lres=hfGetRealArr(coordinates,coords,nDim*nMaxAt)

do 111 i=1,nAt

write(*,*)(coords(k,i),k=1,3)

111continue

write(*,*)'-----------'

return
Console C and Fortran Applications 191

Fortran Programs
end

subroutine PutCoords(coords,nDim,nMaxAt,nAt)

c--

c takes the coords array and send it back to HyperChem

c as the cartesian coordinates of all atoms

c--

c include HAPI definitions and declarations

 include 'hc.fi'
 include 'hsv.fi'

 double precision coords(nDim,nMaxAt)

 write(*,*)'There are ',nAt,' atoms'

 do 111 i=1,nAt

 coords(3,i) = -coords(3,i)

 write(*,*)(coords(k,i),k=1,3)

111 continue

 write(*,*)'-----------'

c get xyz coordinates of all atoms and place them into 'coords' array

c using hfGetRealArr "binary" function ("coordinates" is Real Array)

lres=hfSetRealArr(coordinates,coords,nDim*nAt)
 return

 end

The console output is,
192 Chapter 14

Fortran Programs

ary

tom
nes
ue
les
ber

y

ten-

e
 of
t

tals

 full
the
This example illustrates the use of both binary calls such as hfSetRealArr that
require the include file hsv.fi as well as text calls such as hfExecTxt that
do not. The binary calls require the include file hsv.fi to map integers such
as “atom_count” to the appropriate HyperChem variable. Note that in bin
calls all “hyphens” are replaced by “underscores”. Thus the HSV, atom-
count, maps to the integer atom_count through hsv.fi. Each of the HAPI
calls is described in Appendix C.

A single call in the code above is all that is necessary to read or write the a
coordinates once the total number of atoms is know. HyperChem combi
atom numbers within a molecule with molecule numbers to obtain a uniq
atom number. The code first of all has to query for the number of molecu
and then for the number of atoms in each molecule to obtain the total num
of atoms. Beyond that computation the rest of the above program is ver
straight forward.

MiniGauss Orbitals

The next example is one which contains the elements of a number of po
tially very significant uses for the CDK. It provides molecule creation and
visualization for an ab initio wave function package. The ab initio package is
based on a demonstration Fortran code that is an appendix to the book,

Modern Quantum Chemistry

Attila Szabo and Neil S. Ostlund

Dover Publications, Inc.

New York, 1996

This program, only a couple of pages long, contains all the code for an ab ini-
tio STO-1G, STO-2G, or STO-3G calculation on 2-electron diatomics lik
H2, HeH+, He2

++, etc. It has proved a useful educational tool for a number
young (and not-so-young) theoreticians. What we do here is offer a “fron
end” to this program to illustrate how HyperChem can provide molecular
coordinates plus the visualization of the 3D shape of the calculated orbi
and charge density.

Outline

The basic idea of this example is to mimic the actions of HyperGauss, a
fledged ab initio package that comes with HyperChem. We will operate
Console C and Fortran Applications 193

Fortran Programs

run
de,

 we
is,

l

ays
ore

ws:

log
MiniGauss back end by having a menu item and scripts to conveniently
the Fortran program. All the scripts for this example, plus the Fortran co
are on the HyperChem CD-ROM associated with the Orbitals directory.
While we could easily use the idea of custom menus to run this program
will simply place an appropriate menu item in the <Script> menu. To do th
we first of all run a script, orbitals.scr, to set up a convenient way of running
these calculations. This script is,

script-menu-caption(1) = "MiniGauss"

script-menu-enabled(1) = true

script-menu-command(1) = "read-tcl-script orbitals.tcl"

This sets up a new menu item, MiniGauss, that when invoked executes a Tc
script called orbitals.tcl. The orbitals.scr script could be placed
into chem.scr so that it is always executed and the MiniGauss menu alw
appears - if you have developed an application that you would like to be m
or less permanently installed. The HyperChem menu item looks as follo

A New GUI Element

The Tcl/Tk script, orbitals.tcl is going to give us an additional GUI
element (dialog box) that makes for interactive use of MiniGauss. This dia
box, invoked by selecting the MiniGauss menu item above, is,
194 Chapter 14

Fortran Programs

 the
 the
ove
he

ry
alcu-
It collects the two Slater exponents for the minimal basis calculation. For
other input to the calculation, i.e. the N of STO-NG, we are going to use
standard facility of HyperChem to define a basis set. Thus, it is only the ab
orbital exponents, plus of course the molecule, that MiniGauss needs. T
Tcl/Tk script, orbitals.tcl, is,

label .l1 -text "Zeta1"

entry .en1 -width 20 -textvariable inzeta1

label .l2 -text "Zeta2"

entry .en2 -width 20 -textvariable inzeta2

button .b -text "Compute" -command {

hcExec "declare-string zeta1"

hcExec "declare-string zeta2"

hcExec "zeta1 $inzeta1"

hcExec "zeta2 $inzeta2"

hcExec "execute-client mini.exe"

Exit

}

pack .l1 .en1 .l2 .en2 .b

This Tcl script is basically just Tk code to create two labels, two text ent
boxes, and a button to dismiss the dialog box and start the MiniGauss c
lation.
Console C and Fortran Applications 195

Fortran Programs

ta1
o cre-

entry
 and
lues

tion,

t
t
ro-
The two text entry boxes are used to input the two orbital exponents, ze
and zeta2, as strings inzeta1 and inzeta2. The button calls HyperChem t
ate two new string variables (new HSV’s) called appropriately zeta1 and
zeta2. These new HSV’s are then assigned the strings collected from the
boxes. This is the first time we have seen the ability to create new HSV’s
as you can see here it is very useful to provide a repository for any new va
entered from a new GUI until they can be passed to their ultimate destina
which in this case will be the MiniGauss program.

The Main Program

The last two things done by pushing the Compute button are:

hcExec "execute-client orbitals.exe"

Exit

The Exit, with a capital E, exits the Tcl script but not HyperChem [an exi
with a small e would exit both the Tcl script and HyperChem!]. In concer
with this, the MiniGauss program is invoked which is our main Fortran p
gram and is here called orbitals.f (and orbitals.exe).

Program Orbitals

implicit double precision(a-h,o-z)

c ---

c include header files - HAPI definitions and declarations

include 'hc.fi'
include 'hsv.fi'
parameter (nDimension=3)

parameter (nMaxAtoms=2000)

character*60 cmd_line

logical result

integer status

integer nAtoms

double precision XYZ(nDimension, nMaxAtoms)

c

c Connect to HyperChem using current command line

c

call getarg(1,cmd_line,status)
196 Chapter 14

Fortran Programs

 you
alls
la-
en-

tes
result=hfConnect(cmd_line)
if (.NOT. result) stop

c we do not want to have names in front of HSVs !

c query-response-has-tag=false does this for us

result=hfExecTxt("query-response-has-tag=false")

write(*,*)'Orbitals Example'

c call subroutine to read in initial atom coordinates

c

call DoCalc(XYZ, nDimension, nMaxAtoms, nAtoms)
call SendResults

end

The main program simply connects to HyperChem and makes sure that
don’t get the tags along with the values when HSV’s are queried. It then c
a routine (DoCalc) that is principally concerned with performing the calcu
tion and one which sends back the results to be displayed graphically (S
dResults).

Get Molecule

The Subroutine DoCalc is primarily concerned with getting the coordina
of all the atoms (nAtoms) to be input to the minimal basis set ab initio calcu-
lation. This subroutine is,

subroutine DoCalc(coords,nDim,nMaxAt,nAt)

implicit double precision(a-h,o-z)

c--

c gets xyz coordinates of all atoms in the system

c and stores them in 'coords' array

c--

c include HAPI definitions and declarations

include 'hc.fi'
include 'hsv.fi'

character *100 buffer

double precision coords(nDim,nMaxAt)

c get number of molecules from HyperChem (integer value)

c using hfGetInt "binary" function
Console C and Fortran Applications 197

Fortran Programs
nMol=hfGetInt(molecule_count)
c we can work only with one molecule

if (nMol .gt. 1) then

write(*,*)'This demo assumes that you have only ONE molecule'

c disconnect from HyperChem

result=hfDisconnect()
stop

endif

c get total number of atoms by scanning all molecules

nAt=0

do 1 i=1,nMol

c get number of atoms in the molecule

c using hfGetIntVecElm "binary" function ("atom_count" is Integer

Vector)

iatm=hfGetIntVecElm(atom_count,i)
nAt=nAt+iatm

1 continue

c we can only work with a diatomic

if (nAt .ne. 2) then

write(*,*)'This demo assumes that you have TWO atoms'

c disconnect from HyperChem

result=hfDisconnect()
stop

endif

c find out atomic numbers

nAtNum1=hfGetIntArrElm(atomic_number, 1, 1)
nAtNum2=hfGetIntArrElm(atomic_number, 2, 1)
if (nAtNum1 .gt. 2 .or. nAtNum2 .gt. 2) then

write(*,*)'This demo assumes that you have H or He atoms'

c disconnect from HyperChem

result=hfDisconnect()
stop

endif

za = dfloat(nAtNum1)

zb = dfloat(nAtNum2)

nCharge=hfGetInt(quantum_total_charge)
nElectrons = nAtNum1 + NAtNum2 - nCharge

if (nElectrons .ne. 2) then

write(*,*)'This demo assumes that you have 2 electrons'

c disconnect from HyperChem
198 Chapter 14

Fortran Programs

. A
ber
nd

for-
r-
r in
 that

ma-
ss.
result=hfDisconnect()
stop

endif

c get the basis set

result = hfQueryTxt("atom-basisset(1,1)", buffer)
if (buffer(1:6).eq.'STO-3G') then
 n=3
else if (buffer(1:6) .eq. 'STO-2G') then
 n=2
else if (buffer(1:6) .eq. 'STO-1G') then
 n=1
else
 n=3
end if

c get the zeta

result = hfQueryTxt("zeta1", buffer)
read (buffer,*) zeta1

result = hfQueryTxt("zeta2", buffer)
read (buffer,*) zeta2

c get xyz coordinates of all atoms and place them into 'coords' array

c using hfGetRealArr "binary" function ("coordinates" is Real Array)

lres=hfGetRealArr(coordinates,coords,nDim*nMaxAt)

dx = coords(1,1)-coords(1,2)

dy = coords(2,1)-coords(2,2)

dz = coords(3,1)-coords(3,2)

r = dsqrt(dx*dx + dy*dy + dz*dz) /0.52918

call hfcalc(n,r,zeta1,zeta2,za,zb)
return

end

The above code contains a number of text and binary calls to HyperChem
single call (hfGetRealArr) gets all the coordinates once we know the num
of atoms. The two orbital exponents that we got from the Tk dialog box a
stored in HyperChem are retrieved from HyperChem along with other in
mation that HyperChem has about the calculation that is about to be pe
formed. One aspect of this information is the basis set, as set by the use
HyperChem. If HyperChem says it is one of the STO-NG basis sets then
information is used, otherwise an STO-3G calculation is performed. The
remaining code near the beginning is associated with getting basic infor
tion about the molecule and making sure it is simple enough for MiniGau
Console C and Fortran Applications 199

Fortran Programs

s
te

nvec-
d
effi-

 here
Wave function Calculation

The call to the routine hfcalc is set up to be identical (apart from iop which i
a printing option) to that in Szabo and Ostlund so that you might substitu
their few pages of code if you so desire. A drastically simpler version of
hfcalc used here is,

subroutine hfcalc(n,r,zeta1,zeta2,za,zb)

implicit double precision(a-h,o-z)

common/matrix/s(2,2),x(2,2),xt(2,2),h(2,2),f(2,2),g(2,2),c(2,2),

$ fprime(2,2),cprime(2,2),p(2,2),oldp(2,2),tt(2,2,2,2),e(2,2)

c(1,1) = .707

c(2,1) = .707

c(1,2) = .707

c(2,2) = -0.707

e(1,1) = -5.0

e(2,2) = 5.0

return

end

This just sets the eigenvalues to arbitrarily be -5.0 and +5.0 and the eige
tors to be the standard in phase and out of phase orbitals for HOMO an
LUMO. The assumption here is made that the overlap is small so that co
cients are just 1/sqrt(2).

As discussed a better hfcalc could easily be programmed. The one shown
is perfectly satisfactory for illustrating the use of the CDK, however.

Displaying Orbitals and ...

The routine that sends back the orbitals for display is,

subroutine SendResults

implicit double precision(a-h,o-z)

common/matrix/s(2,2),x(2,2),xt(2,2),h(2,2),f(2,2),g(2,2),c(2,2),

 $ fprime(2,2),cprime(2,2),p(2,2),oldp(2,2),tt(2,2,2,2),e(2,2)

c include HAPI definitions and declarations

include 'hc.fi'
include 'hsv.fi'

character *80 buff

result = hfExecTxt('orbital-count=2')
write (unit = buff, fmt = '(2f8.4)') e(1,1), e(2,2)
200 Chapter 14

Fortran Programs

 is to

er-
of
he
ly a
 in.
nd
m
result = hfExecTxt('scf-orbital-energy='//buff)
write (unit = buff, fmt = '(2f8.4)') c(1,1), c(2,1)
result = hfExecTxt('alpha-scf-eigenvector(1)='//buff)
write (unit = buff, fmt = '(2f8.4)') c(1,2), c(2,2)
result = hfExecTxt('alpha-scf-eigenvector(2)='//buff)
write result = hfExecTxt('alpha-orbital-occupancy= 2 0')
return

end

There are a number of ways that the results might be returned. One way
make binary HAPI calls such as to hcSetRealVec to return vectors of coeffi-
cients. We have chosen here to illustrate the return of text strings to Hyp
Chem. The first thing that is done is to set the total count of the number
molecular orbitals which in the minimal basis illustrated here is 2. Next t
orbital energies are returned and then the eigenvectors. Since this is on
closed-shell calculation, only the alpha (RHF) coefficients need be filled
Finally the occupancy is set with 2 electrons in the first orbital (HOMO) a
0 electrons in the LUMO. The result of selecting the MiniGauss menu ite
with HeH+ on the screen is,
Console C and Fortran Applications 201

Further Examples

tted
l

and
re-
asic
hem,
 of
abo-

os-
The orbitals or the charge density or the electrostatic potential can be plo
The orbitals are somewhat artificial here but asking for the LUMO orbita
gives a plot like the following:

Diffusion Limited Aggregation

The final example to be mentioned is one of diffusion limited aggregation
is contained in the dla directory from the HyperChem CD-ROM. This is p
sented for those who wish to follow it as an example that has a Visual B
program, setup_dla.exe, to create a number of new variables in HyperC
the getting from HyperChem of the initial molecular system, the creation
new atoms and structures in the HyperChem workspace, and a more el
rated dialog box than we have used so far.

Further Examples

Further examples of using the CDK that might be of interest to you can p
sibly be found in conjunction with your specific CD-ROM installation of
HyperChem or possibly on the Hypercube WWW site,
http://www.hyper.com
202 Chapter 14

 to
ript
s are
ter

se
iliar
an-

-
r in
Appendix A

Classification of Hcl Commands

The Classes

In this appendix we list all the HSV’s and Hcl direct commands according
a set of classes that will hopefully assist you in finding the appropriate sc
command for your task. In the Reference Manual these script command
classified differently - according to the related HyperChem menu. In Chap
7 all HSV’s and direct Hcl commands are listed in alphabetic order. The
three listings complement each other and should assist you in getting fam
with the extensive set of script commands. The listings in the Reference M
ual have the most explicit description of each of the following script com
mands and should be referred to if the use of the command listed here o
Chapter 6 is confusing to you.

The classes which we use to help classify all the script commands are:

• General Operations

• Cursors

• Selections

• File Operations

• Scripts

• Info

• Errors

• Logging

• Auxiliary

• Viewing

• Rendering

• Coloring and Labeling
203

The Classes

em
te-

 sol-
r

0).
• Images

• Model Building

• Stereochemistry

• Atom Properties

• Molecular Properties

• Backends

• Molecular Mechanics Calculations

• Amino Acids and Nucleic Acids

• Molecular Dynamics and Monte Carlo

• Optimization

• General Quantum Mechanics

• Semi-empirical Calculations

• Ab Initio Calculations

• Configuration Interaction

• Infrared Spectra

• UV Spectra

• Plotting

General Operations

The following script commands involve the general operation of HyperCh
including things that don’t easily fit into other categories. Thus, in this ca
gory we have the script commands for a single-point calculation and for
vation using the periodic box. Other commands have to do with default o
custom menus, printing, and the operation of the Cancel button.

Single Point

calculation-method: Variable, Read/Write, Type: enum.

do-single-point: Command, Arg list: (void).

total-energy: Variable, Readonly, Type: float in range (-1e+010 .. 1e+01
204 Appendix A

The Classes

us
ors
s.
hen
rna-
t is
Solvation

periodic-boundaries: Variable, Read/Write, Type: boolean.

periodic-box-size: Variable, Readonly, Type: (unknown).

solvate-system: Command, Arg list: (void).

solvate-system-in-this-box: Command, Arg list: float, float, float.

Customization

hide-toolbar: Variable, Read/Write, Type: boolean.

load-default-menu: Command, Arg list: (void).

load-user-menu: Command, Arg list: string.

switch-to-user-menu: Command, Arg list: (void).

custom-title: Variable, Read/Write, Type: string.

factory-settings: Command, Arg list: (void).

Printing

print : Command, Arg list: (void).

printer-background-white : Variable, Read/Write, Type: boolean.

Other

cancel-menu: Variable, Read/Write, Type: boolean.

do-vibrational-analysis: Command, Arg list: (void).

help: Command, Arg list: string.

hide-messages: Variable, Read/Write, Type: boolean.

Cursors

The following script commands have to do with the operation of the vario
cursors apart from the drawing and selection cursor. The remaining curs
are associated with rotation, translation, zooming, and clipping operation
These have parameters that describe, for example, the unit of rotation w
the rotation cursor is dragged in the work space (x-y-rotation-cursor). alte
tively, there is a unit or rotation when the appropriate keyboard equivalen
Classification of Hcl Commands 205

The Classes

/Pref-

.

).

.

da-
han
d in
used (x-y-rotation-icon-step). These parameters can be set via the <File
erences...> dialog box or via the following script commands.

Mouse Mode

mouse-mode: Variable, Read/Write, Type: enum

Clipping

clip-cursor: Variable, Read/Write, Type: float in range (0 .. 1000).

clip-icon-step: Variable, Read/Write, Type: float in range (0 .. 1000).

back-clip: Variable, Read/Write, Type: float

front-clip : Variable, Read/Write, Type: float.

Rotation

x-y-rotation-cursor : Variable, R/W, Type: float angle in range (0 .. 3600)

x-y-rotation-icon-step: Variable, R/W, Type: float angle in range (0 .. 3600

z-rotation-cursor: Variable, R/W, Type: float angle in range (0 .. 3600).

z-rotation-icon-step: Variable, R/W, Type: float angle in range (0 .. 3600)

Translation

x-y-translation-icon-step: Variable, R/W, Type: float in range (0 .. 1000).

z-translation-cursor: Variable, R/W, Type: float in range (0 .. 1000).

z-translation-icon-step: Variable, R/W, Type: float in range (0 .. 1000).

Zoom

zoom-cursor: Variable, Read/Write, Type: float in range (1 .. 1000).

zoom-icon-step: Variable, Read/Write, Type: float in range (1 .. 1000).

Selections

The following script commands have to do with making selections, a fun
mental operation. HyperChem generally operates on a selection rather t
on the whole molecular system and these selection scripts are often use
conjunction with other operations.
206 Appendix A

The Classes
Select Options

multiple-selections: Variable, Read/Write, Type: boolean.

select-sphere: Variable, Read/Write, Type: boolean.

selection-target: Variable, Read/Write, Type: enum

Select

select-none: Command, Arg list: (void).

select-atom: Command, Arg list: integer, integer.

select-residue: Command, Arg list: integer, integer.

un-select-atom: Command, Arg list: integer, integer.

un-select-residue: Command, Arg list: integer, integer.

Ask About Selection

selected-atom-count: Variable, Readonly, Type: integer.

selected-atom: Variable, Readonly, Type: vector of integer, integer.

selection-value: Variable, Readonly, Type: float.

Operate on Selection

delete-selected-atoms: Command, Arg list: (void).

reorder-selections: Variable, Read/Write, Type: boolean.

Named Selections

name-selection: Command, Arg list: string.

delete-named-selection: Command, Arg list: string.

named-selection-count: Variable, Readonly, Type: integer.

named-selection-name: Variable, Readonly, Type: vector of string.

named-selection-value: Variable, Readonly, Type: vector of float.

select-name: Command, Arg list: string.

Other

selection-color: Variable, Read/Write, Type: enum
Classification of Hcl Commands 207

The Classes

s
File Operations

The following script commands deal with operations on the molecule file
and the import/export files.

Molecule File

file-format : Variable, Read/Write, Type: string.

path: Variable, Read/Write, Type: string.

current-file-name: Variable, Readonly, Type: string.

open-file: Command, Arg list: string.

merge-file: Command, Arg list: string.

write-file : Command, Arg list: string.

delete-file: Command, Arg list: string.

Options

file-needs-saved: Variable, Read/Write, Type: boolean.

velocities-in-hin-file: Variable, Read/Write, Type: boolean.

view-in-hin-file : Variable, Read/Write, Type: boolean.

PDB File

connectivity-in-pdb-file: Variable, Read/Write, Type: boolean.

hydrogens-in-pdb-file: Variable, Read/Write, Type: boolean.

non-standard-pdb-names: Variable, Read/Write, Type: boolean.

Import/Export

import-dipole : Variable, Read/Write, Type: boolean.

import-ir: Variable, Read/Write, Type: boolean.

import-orbitals: Variable, Read/Write, Type: boolean.

import-property-file: Command, Arg list: string.

import-uv: Variable, Read/Write, Type: boolean.
208 Appendix A

The Classes

elf.
, or
G
enu.
export-dipole: Variable, Read/Write, Type: boolean.

export-ir: Variable, Read/Write, Type: boolean.

export-orbitals: Variable, Read/Write, Type: boolean.

export-property-file: Command, Arg list: string.

export-uv: Variable, Read/Write, Type: boolean.

Other

file-diff-message: Command, Arg list: string, string, string, string.

write-atom-map: Command, Arg list: string.

Scripts

The following script commands have to do with the process of scripting its
They are used to open script files, control execution of script commands
control the process of notification. Certain other scripts control the OMS
output of a query or manage the menu items inserted under the script m
Finally, values of HSVs can be pushed and popped with a stack.

Script Files

read-script: Command, Arg list: string.

read-tcl-script: Command, Arg list: string.

compile-script-file: Command, Arg list: string, string.

read-binary-script : Command, Arg list: string.

Execution

query-value: Command, Arg list: .

execute-string: Command, Arg list: string.

pause-for: Command, Arg list: integer in range (0 .. 32767).

exit-script: Command, Arg list: (void).
Classification of Hcl Commands 209

The Classes
Notifications

notify-on-update: Command, Arg list: string.

cancel-notify: Command, Arg list: string.

notify-with-text : Variable, Read/Write, Type: boolean.

variable-changed: Command, Arg list: string.

OMSGs

append-omsgs-to-file: Command, Arg list: string.

omsg-file: Variable, Read/Write, Type: string.

omsgs-not-to-file: Command, Arg list: (void).

omsgs-to-file: Command, Arg list: string.

query-response-has-tag: Variable, Read/Write, Type: boolean.

Menus

change-user-menuitem: Command, Arg list: integer, string, string.

script-menu-caption: Variable, Read/Write, Type: vector of string.

script-menu-checked: Variable, Read/Write, Type: vector of boolean.

script-menu-command: Variable, Read/Write, Type: vector of string.

script-menu-enabled: Variable, Read/Write, Type: vector of boolean.

script-menu-help-file: Variable, Read/Write, Type: vector of string.

script-menu-help-id: Variable, Read/Write, Type: vector of integer.

script-menu-in-use: Variable, Read/Write, Type: vector of boolean.

script-menu-message: Variable, Read/Write, Type: vector of string.

Stack Operation

pop-no-value: Command, Arg list: string.

pop-value: Command, Arg list: string.

push: Command, Arg list: string.

Other

execute-client: Command, Arg list: string.
210 Appendix A

The Classes

execute-hyperchem-client: Command, Arg list: string.

message: Variable, Read/Write, Type: string.

one-line-arrays: Variable, Read/Write, Type: boolean.

Info

The following script commands are part of a capability for enquiring and
obtaining information about a specific HSV.

info-access: Variable, Readonly, Type: string.

info-enum-id-of: Variable, Readonly, Type: string.

info-enum-list: Variable, Readonly, Type: string.

info-factory-setting: Variable, Readonly, Type: string.

info-id-of : Variable, Readonly, Type: integer.

info-type-of: Variable, Readonly, Type: string.

info-type-of-element: Variable, Readonly, Type: string.

info-variable-target: Variable, Read/Write, Type: string.

Errors

The following script commands deal with errors.

no-source-refs-in-errors: Command, Arg list: (void).

source-refs-in-errors: Command, Arg list: (void).

script-refs-in-errors : Variable, Read/Write, Type: boolean.

error : Variable, Read/Write, Type: string.

errors-are-not-omsgs: Command, Arg list: (void).

errors-are-omsgs: Command, Arg list: (void).

ignore-script-errors: Variable, Read/Write, Type: boolean.

hide-errors: Variable, Read/Write, Type: boolean.
Classification of Hcl Commands 211

The Classes

 log

).

).
Logging

The following script commands have to do with the process of creating a
file.

start-logging: Command, Arg list: string, boolean.

stop-logging: Command, Arg list: (void).

log-comment: Command. Arg list: string.

mechanics-print-level: Variable, Read/Write, Type: integer in range (0 .. 9

quantum-print-level : Variable, Read/Write, Type: integer in range (0 .. 9

Auxiliary

The following script commands defy simple classification.

Declarations

declare-integer: Command, Arg list: string.

declare-string: Command, Arg list: string.

Warnings

warning: Variable, Read/Write, Type: string.

warning-type: Variable, Read/Write, Type: enum(none, log, message).

hide-warnings: Variable, Read/Write, Type: boolean.

warnings-are-not-omsgs: Command, Arg list: void.

warnings-are-omsgs: Command, Arg list: void.

Screen Output

status-message: Variable, Read/Write, Type: string.

request: Command, Arg list: string.

Version

version: Variable, Readonly, Type: string.

serial-number: Variable, Readonly, Type: string.
212 Appendix A

The Classes

eter-
nder-

ol-
Other

print-variable-list : Command, Arg list: string.

toggle: Command, Arg list: string.

Viewing

The following script commands are associated with the manipulations d
mining what one sees on the screen excluding the specific molecular re
ing. Some of them are simply viewing transformations. Others move the m
ecules or show attributes of the molecules.

Alignment

align-molecule: Command, Arg list: list of enums

align-viewer: Command. Arg list: enum.

Redisplay

global-inhibit-redisplay : Variable, Readonly, Type: boolean.

inhibit-redisplay : Variable, Read/Write, Type: boolean.

Rotation

rotate-molecules: Command, Arg list: enum, float.

rotate-viewer: Command, Arg list: enum, float.

Translation

translate-selection: Command, Arg list: float, float, float.

translate-view: Command, Arg list: float, float, float.

translate-whole-molecules: Variable, Read/Write, Type: boolean.

translate-merged-systems: Variable, Read/Write, Type: boolean.

use-fast-translation: Variable, Read/Write, Type: boolean.

Window

window-height: Variable, Read/Write, Type: integer.
Classification of Hcl Commands 213

The Classes

le-
window-width : Variable, Read/Write, Type: integer.

Other

show-perspective: Variable, Read/Write, Type: boolean.

wall-eyed-stereo: Variable, Read/Write, Type: boolean.

zoom: Command, Arg list: float in range (0.01 .. 50).

show-axes: Variable, Read/Write, Type: boolean.

show-dipoles: Variable, Read/Write, Type: boolean.

Rendering

The following script commands affect the molecular rendering of the mo
cule in the workspace.

General Options

bond-spacing-display-ratio: Variable, R/W, Type: float in range (0 .. 1).

cpk-max-double-buffer-atoms: Variable, Read/Write, Type: integer.

dot-surface-angle: Variable, R/W, Type: float angle in range (-90 .. 90).

double-buffered-display: Variable, Read/Write, Type: boolean.

render-method: Variable, Read/Write, Type: enum.

Specific Rendering Options

balls-highlighted: Variable, R/W, Type: boolean

balls-radius-ratio: Variable, R/W, Type: float in range (0 .. 1).

balls-shaded: Variable, R/W, Type: boolean

cylinders-color-by-element: Variable, R/W, Type: boolean

cylinders-width-ratio : Variable, R/W, Type: float in range (0 .. 1).

spheres-highlighted: Variable, R/W, Type: boolean

spheres-shaded: Variable, R/W, Type: boolean

sticks-width: Variable, R/W, Type: integer in range (0 .. 25)
214 Appendix A

The Classes

res-
.

Show - Don’t Show

show-hydrogen-bonds: Variable, Read/Write, Type: boolean.

show-hydrogens: Variable, Read/Write, Type: boolean.

show-isosurface: Command, Arg list: boolean.

show-multiple-bonds: Variable, Read/Write, Type: boolean.

show-periodic-box: Variable, Read/Write, Type: boolean.

show-ribbons: Variable, Read/Write, Type: boolean.

show-stereo: Variable, Read/Write, Type: boolean.

show-stereochem-wedges: Variable, Read/Write, Type: boolean.

show-vibrational-vectors: Variable, Read/Write, Type: boolean.

Coloring and Labeling

The following script commands affect the showing of labels for atoms or
idues as well as the colors that appear on the screen for various objects

Color

atom-color: Variable, Read/Write, Type: array of enum.

bond-color: Variable, Read/Write, Type: enum.

color-element: Command, Arg list: integer, enum.

color-selection: Command, Arg list: string.

negatives-color: Variable, Read/Write, Type: enum.

positives-color: Variable, Read/Write, Type: enum.

revert-element-colors: Command, Arg list: (void).

window-color: Variable, Read/Write, Type: enum.

Labels

atom-label-text: Variable, Readonly, Type: array of string.

atom-labels: Variable, Read/Write, Type: enum.
Classification of Hcl Commands 215

The Classes

).
Images

The following script commands deal with getting bitmaps and metafiles
(images) of molecules into the clipboard or into a file.

image-color: Variable, Read/Write, Type: boolean.

image-destination-clipboard: Variable, Read/Write, Type: boolean.

image-destination-file: Variable, Read/Write, Type: boolean.

image-file-bitmap: Variable, Read/Write, Type: boolean.

image-file-bitmapRGB: Variable, Read/Write, Type: boolean.

image-file-metafile: Variable, Read/Write, Type: boolean.

image-include-cursor: Variable, Read/Write, Type: boolean.

image-source-window: Variable, Read/Write, Type: enum.

Model Building

The following script commands deal with aspect of drawing and creating
molecules with the model builder.

Options

allow-ions: Variable, Read/Write, Type: boolean.

explicit-hydrogens: Variable, Read/Write, Type: boolean.

default-element: Variable, Read/Write, Type: integer in range (0 .. 103).

Drawing

create-atom: Command, Arg list: integer in range (0 .. 103).

set-bond: Command, Arg list: integer, integer, integer, integer, enum.

delete-atom: Command, Arg list: integer, integer.

Constraints

constrain-geometry: Command, Arg list: string.

constrain-bond-length: Command, Arg list: float in range (0 .. 100).

constrain-bond-angle: Command, Arg list: float angle in range (-360 .. 360
216 Appendix A

The Classes

g

r.

ies
constrain-bond-torsion: Command, Arg list: angle in range (-360 ... 360)

unconstrain-bond-length: Command, Arg list: (void).

unconstrain-bond-angle: Command, Arg list: (void).

unconstrain-bond-torsion: Command, Arg list: (void).

Other

is-ring-atom: Variable, Readonly, Type: array of boolean.

neighbors: Variable, Readonly, Type: array of (unknown).

Stereochemistry

The following script commands deal with aspects of creating and showin
specific stereochemistry.

builder-enforces-stereo: Variable, Read/Write, Type: boolean.

change-stereochem: Command, Arg list: integer, integer.

chirality : Variable, Read/Write, Type: array of string.

constrain-bond-down: Command, Arg list: integer, integer, integer, intege

constrain-bond-up: Command, Arg list: integer, integer, integer, integer.

constrain-change-stereo: Command, Arg list: integer, integer.

constrain-fix-stereo: Command, Arg list: integer, integer.

cycle-atom-stereo: Command, Arg list: integer, integer.

cycle-bond-stereo: Command, Arg list: integer, integer, integer, integer.

remove-all-stereo-constraints: Command, Arg list: (void).

remove-stereo-constraint: Command, Arg list: integer, integer.

Atom Properties

The following script commands deal with changing or displaying propert
of individual atoms perhaps associated with labels.

Labels

atom-charge: Variable, Read/Write, Type: array of float.

atom-mass: Variable, Read/Write, Type: array of float.
Classification of Hcl Commands 217

The Classes

 the
atom-name: Variable, Read/Write, Type: array of string.

atom-type: Variable, Read/Write, Type: array of string.

atomic-number: Variable, Read/Write, Type: array of integer.

atomic-symbol: Variable, Readonly, Type: array of string.

set-atom-charge: Command, Arg list: float in range (-100 .. 100).

set-atom-type: Command, Arg list: string.

Coordinates and Velocities

coordinates: Variable, Read/Write, Type: array of float, float, float.

set-velocity: Command, Arg list: enum, float, float, float.

velocities: Variable, Read/Write, Type: array of float, float, float

set-bond-angle: Command, Arg list: float angle in range (0 .. 180).

set-bond-length: Command, Arg list: float in range (0 .. 3200).

set-bond-torsion: Command, Arg list: float angle in range (-360 .. 360).

Other

coordination: Variable, Readonly, Type: array of integer.

Molecule Properties

The following script commands deal with some properties of molecules or
atoms in molecules.

Charge-Multiplicity

multiplicity : Variable, Read/Write, Type: integer in range (1 .. 6).

quantum-total-charge: Variable, R/W, Type: integer

Counts

atom-count: Variable, Readonly, Type: vector of integer.

molecule-count: Variable, Readonly, Type: integer.

Properties

dipole-moment: Variable, R/W , Type: float in range (-1e+10 .. 1e+10).
218 Appendix A

The Classes

).

nal
dipole-moment-components: Variable, R/W, Type: float, float, float.

heat-of-formation: Variable, R only , Type: float in range (-1e+10 .. 1e+10

moments-of-inertia: Variable, Readonly, Type: float float float.

Back Ends

The following script commands deal with the operation of the computatio
back ends and communication with them.

Basic

backend-active: Variable, Read/Write, Type: boolean.

backend-communications: Variable, Read/Write, Type: enum.

Large Communication Structures

atom-info: Variable, Readonly, Type: (unknown).

mechanics-info: Variable, Readonly, Type: (unknown).

mechanics-data: Variable, Readonly, Type: (unknown).

Remote Back Ends

backend-host-name: Variable, Read/Write, Type: string.

backend-process-count: Variable, R/W, Type: integer in range (1 .. 32).

backend-user-id: Variable, Read/Write, Type: string.

backend-user-password: Variable, Read/Write. Type: string.

Molecular Mechanics Calculations

The following script commands deal with computations in molecular
mechanics.

Method

molecular-mechanics-method: Variable, Read/Write, Type: enum.

is-extended-hydrogen: Variable, Readonly, Type: array of boolean.
Classification of Hcl Commands 219

The Classes

).

).

.

).

).

).

).

con-

keep-atom-charges: Variable, Read/Write, Type: boolean.

Energy Components

bend-energy: Variable, Readonly, Type: float in range (-1e+10 .. 1e+10).

stretch-energy: Variable, Readonly, Type: float in range (-1e+10 .. 1e+10

torsion-energy: Variable, Readonly, Type: float in range (-1e+10 .. 1e+10

nonbond-energy: Variable, R only, Type: float in range (-1e+10 .. 1e+10)

estatic-energy: Variable, Readonly, Type: float in range (-1e+10 .. 1e+10

hbond-energy: Variable, Readonly, Type: float in range (-1e+10 .. 1e+10

Cutoffs

cutoff-type: Variable, Read/Write, Type: enum.

cutoff-inner-radius : Variable, Read/Write, Type: float in range (0 .. 1e+10

cutoff-outer-radius: Variable, Read/Write, Type: float in range (0 .. 1e+10

Scale Factors

mechanics-dielectric: Variable, R/W, Type: enum, enum, enum, enum.

mechanics-dielectric-scale-factor: Variable, R/W, Type: four floats.

mechanics-electrostatic-scale-factor: Variable, R/W, Type: four floats.

mechanics-mmp-electrostatics: Variable, Read/Write, Type: enum.

mechanics-van-der-waals-scale-factor: Variable, R/W, Type: four floats.

Parameters

parameter-set-changed: Variable, Read/Write, Type: boolean.

use-parameter-set: Command,Arg list: string.

Amino Acids and Nucleic Acids

The following script commands pertain to amino acid templates and the
struction of peptides or to nucleic acid templates and the construction of
DNA-like structures.
220 Appendix A

The Classes

).

.

.

).

).

).

).

).
Amino Acids

add-amino-acid: Command, Arg list: string.

amino-alpha-helix: Command, Arg list: (void).

amino-beta-sheet: Command, Arg list: (void).

amino-isomer: Variable, Read/Write, Type: enum.

amino-omega: Variable, Read/Write, Type: float angle in range (-360 .. 360

amino-phi: Variable, Read/Write, Type: float angle in range (-360 .. 360)

amino-psi: Variable, Read/Write, Type: float angle in range (-360 .. 360)

Nucleic Acids

add-nucleic-acid: Command, Arg list: string.

nucleic-a-form: Command, Arg list: (void).

nucleic-alpha: Variable, Read/Write, Type: float angle in range (-360 .. 360

nucleic-b-form: Command, Arg list: (void).

nucleic-backwards: Variable, Read/Write, Type: boolean.

nucleic-beta: Variable, Read/Write, Type: float angle in range (-360 .. 360

nucleic-chi: Variable, Read/Write, Type: float angle in range (-360 .. 360

nucleic-delta: Variable, Read/Write, Type: float angle in range (-360 .. 360

nucleic-double-strand: Variable, Read/Write, Type: boolean.

nucleic-epsilon: Variable, R/W, Type: float angle in range (-360 .. 360).

nucleic-gamma: Variable, R/W, Type: float angle in range (-360 .. 360).

nucleic-sugar-pucker: Variable, Read/Write, Type: enum.

nucleic-z-form: Command, Arg list: (void).

nucleic-zeta: Variable, Read/Write, Type: float angle in range (-360 .. 360

General Residue

mutate-residue: Command, Arg list: string.

residue-charge: Variable, Readonly, Type: array of float.

residue-coordinates: Variable, Readonly, Type: array of float, float, float.
Classification of Hcl Commands 221

The Classes

m-
ula-
residue-count: Variable, Readonly, Type: vector of integer.

residue-label-text: Variable, Readonly, Type: array of string.

residue-labels: Variable, Read/Write, Type: enum.

residue-name: Variable, Readonly, Type: array of string.

Molecular Dynamics and Monte Carlo

The following script commands pertain to the two type of molecular dyna
ics (normal and Langevan) and the very closely related Mont eCarlo calc
tions.

Basic

do-molecular-dynamics: Command, Arg list: (void)

do-langevin-dynamics: Command, Arg list: (void)

do-monte-carlo: Command, Arg list: (void)

dynamics-restart: Variable, Read/Write, Type: boolean.

dynamics-average-period: Variable, R/W, Type: integer.

dynamics-collection-period: Variable, R/W, Type: integer.

screen-refresh-period: Variable, Read/Write, Type: integer.

Run Parameters

dynamics-bath-relaxation-time: Variable, R/W, Type: float.

dynamics-constant-temp: Variable, Read/Write. Type: boolean.

dynamics-cool-time: Variable, Read/Write, Type: float.

dynamics-heat-time: Variable, Read/Write, Type: float.

dynamics-final-temp: Variable, R/W, Type: float.

dynamics-friction-coefficient: Variable, R/W, Type: float

dynamics-run-time: Variable, Read/Write, Type: float.

dynamics-seed: Variable, Read/Write, Type: integer.

dynamics-simulation-temp: Variable, Read/Write, Type: float.

dynamics-starting-temp: Variable, Read/Write, Type: float.

dynamics-temp-step: Variable, Read/Write, Type: float.
222 Appendix A

The Classes

.

dynamics-time-step: Variable, Read/Write, Type: float.

Averaging

append-dynamics-average: Command, Arg list: string.

append-dynamics-graph: Command, Arg list: string.

dynamics-info-elapsed-time: Variable, R only, Type: float.

dynamics-info-kinetic-energy: Variable, Readonly, Type: float.

dynamics-info-last-update: Variable, Readonly, Type: boolean.

dynamics-info-potential-energy: Variable, Readonly, Type: float.

dynamics-info-temperature: Variable, Readonly, Type: float.

dynamics-info-total-energy: Variable, Readonly, Type: float.

Playback

dynamics-playback: Variable, Read/Write, Type: enum.

dynamics-playback-end: Variable, Read/Write, Type: integer.

dynamics-playback-period: Variable, Read/Write, Type: integer.

dynamics-playback-start: Variable, Read/Write, Type: integer.

dynamics-snapshot-filename: Variable, Read/Write, Type: string.

dynamics-snapshot-period: Variable, Read/Write, Type: integer.

Monte Carlo Specific

monte-carlo-cool-steps: Variable, Read/Write, Type: float

monte-carlo-heat-steps: Variable, Read/Write, Type: float

monte-carlo-info-acceptance-ratio: Variable, Readonly, Type: float

monte-carlo-max-delta: Variable, R/W, Type: float

monte-carlo-run-steps: Variable, R/W, Type: float

Optimization

The following script commands deal with facets of geometry optimization
Classification of Hcl Commands 223

The Classes

).

.

om-
her it

.
Basic

do-optimization: Command, Arg list: (void).

optim-algorithm : Variable, Read/Write, Type: enum.

optim-converged: Variable, Readonly, Type: boolean.

optim-convergence: Variable, Read/Write, Type: float in range (0 .. 100).

optim-max-cycles: Variable, Read/Write, Type: integer in range (1 .. +Inf

rms-gradient: Variable, Readonly, Type: float in range (-1e+10 .. 1e+10)

Restraints

restraint : Command, Arg list: string, float, float.

restraint-tether : Command, Arg list: complex.

use-no-restraints: Command, Arg list: (void).

use-restraint: Command, Arg list: string, boolean.

General Quantum Mechanics

The following script commands deal with facets of quantum mechanical c
putations that are independent of the quantum mechanical method, whet
is semi-empirical or ab initio.

Input Parameters

do-qm-calculation: Variable, Read/Write, Type: boolean.

uhf: Variable, Read/Write, Type: boolean.

accelerate-scf-convergence: Variable, Read/Write, Type: boolean.

alpha-orbital-occupancy: Variable, Read/Write, Type: vector of float.

beta-orbital-occupancy: Variable, Read/Write, Type: vector of float.

excited-state: Variable, Read/Write, Type: boolean.

max-iterations: Variable, Read/Write, Type: integer in range (1 .. 32767)

scf-convergence: Variable, Read/Write, Type: float in range (0 .. 100).

Output Results

orbital-count : Variable, Readonly, Type: integer.
224 Appendix A

The Classes

to
me
t of
alpha-scf-eigenvector: Variable, Read/Write, Type: vector of float-list.

beta-scf-eigenvector: Variable, Read/Write, Type: vector of float-list.

scf-orbital-energy: Variable, Read/Write, Type: vector of float.

orbital-results: Variable, Read/Write, Type: vector of float-list.

scf-electronic-energy: Variable, Readonly, Type: float.

Semi-empirical Calculations

The following script commands deal with the input parameters required
specifically perform semi-empirical calculations and with their results. So
of the input parameteters for semi-empirical methods are essentially par
the *.abp parameter files.

General

semi-empirical-method: Variable, Read/Write, Type: enum.

d-orbitals-on-second-row: Variable, Read/Write, Type: boolean.

scf-atom-energy: Variable, Readonly, Type: float.

scf-binding-energy: Variable, Readonly, Type: float.

scf-core-energy: Variable, Readonly, Type: float.

Huckel

huckel-constant: Variable, Read/Write, Type: float in range (0 .. 10).

huckel-scaling-factor: Variable, R/W, Type: float in range (0 .. 100000).

huckel-weighted: Variable, Read/Write, Type: boolean.

ZINDO

zindo-1-pi-pi: Variable, Read/Write, Type: float in range (0 .. 2).

zindo-1-sigma-sigma: Variable, Read/Write, Type: float in range (0 .. 2).

zindo-s-pi-pi: Variable, Read/Write, Type: float in range (0 .. 2).

zindo-s-sigma-sigma: Variable, Read/Write, Type: float in range (0 .. 2).
Classification of Hcl Commands 225

The Classes

s -
Ab Initio Calculations

The following script commands pertain to performing ab initio calculation
their inputs and their results.

Input Options

abinitio-calculate-gradient: Variable, Read/Write, Type: boolean.

abinitio-d-orbitals : Variable, Read/Write, Type: boolean.

abinitio-f-orbitals : Variable, Read/Write, Type: boolean.

abinitio-direct-scf: Variable, Read/Write, Type: boolean.

abinitio-mo-initial-guess: Variable, Read/Write, Type: enum.

abinitio-mp2-correlation-energy: Variable, Read/Write, Type: boolean.

abinitio-mp2-frozen-core: Variable, Read/Write, Type: boolean.

abinitio-scf-convergence: Variable, R/W, Type: float in range (0 .. 100).

abinitio-use-ghost-atoms: Variable, Read/Write, Type: boolean.

Basis Set

assign-basisset: Command, Arg list: string.

atom-basisset: Variable, Read/Write, Type: array of string.

atom-extra-basisset: Variable, Read/Write, Type: array of string, float.

basisset-count: Variable, Readonly, Type: integer.

2-electron Integrals

abinitio-buffer-size: Variable, Read/Write, Type: integer.

abinitio-cutoff : Variable, Read/Write, Type: float in range (0 .. 1e+10).

abinitio-integral-format : Variable, Read/Write, Type: enum.

abinitio-integral-path : Variable, Read/Write, Type: string.

Results

mp2-energy: Variable, Readonly, Type: float.
226 Appendix A

The Classes

ter-

).

).

y of

.

.

ic
Configuration Interaction

The following script commands are relevant to post-SCF configuration in
action calculations.

ci-criterion : Variable, Read/Write, Type: enum.

ci-excitation-energy: Variable, Read/Write, Type: float in range (0 .. 10000

ci-occupied-orbitals: Variable, R/W, Type: integer in range (0 .. 32767).

ci-unoccupied-orbitals: Variable, R/W, Type: integer in range (0 .. 32767

configuration-interaction : Variable, Read/Write, Type: enum.

Infrared Spectra

The following script commands are relevant to the calculation and displa
vibrational spectra.

Animations

animate-vibrations: Variable, Read/Write, Type: boolean.

ir-animate-amplitude: Variable, Read/Write, Type: float in range (0 .. 10)

ir-animate-cycles: Variable, Read/Write, Type: integer in range (0 .. +Inf)

ir-animate-steps: Variable, Read/Write, Type: integer in range (3 .. +Inf).

Spectra

ir-band-count: Variable, Read/Write, Type: integer.

vibrational-mode: Variable, Read/Write, Type: integer.

ir-frequency: Variable, Read/Write, Type: vector of float.

ir-intensity : Variable, Read/Write, Type: vector of float.

ir-intensity-components: Variable, R/W, Type: vector of float, float, float.

ir-normal-mode: Variable, Read/Write, Type: vector of float-list.

UV Spectra

The following script commands are relevant to the calculation of electron
spectra.
Classification of Hcl Commands 227

The Classes

on-
ro-
configuration: Variable, Read/Write, Type: integer.

uv-band-count: Variable, Read/Write, Type: integer.

uv-dipole-components: Variable, Read/Write, Type: vector of float-list.

uv-energy: Variable, Read/Write, Type: vector of float.

uv-oscillator-strength: Variable, Read/Write, Type: vector of float.

uv-spin: Variable, Read/Write, Type: vector of float.

uv-total-dipole: Variable, Read/Write. Type: vector of float.

uv-transition-dipole: Variable, R/W, Type: vector of float, float, float.

Plotting

the following script commands are relevant to the plotting of 2D and 3D c
tours and renderings of orbitals, electron density, spin density and elect
static potentials.

General Options

graph-beta: Variable, Read/Write, Type: boolean.

graph-data-type: Variable, Read/Write, Type: enum.

graph-orbital-selection-type: Variable, Read/Write, Type: enum.

graph-orbital-offset: Variable, Read/Write, Type: integer in range (0 ..
+Inf).

2D

do-qm-graph: Variable, Read/Write, Type: boolean.

graph-contour-increment: Variable, Read/Write, Type: float.

graph-contour-increment-other: Variable, Read/Write, Type: boolean.

graph-contour-levels: Variable, Read/Write, Type: integer.

graph-contour-start: Variable, Read/Write, Type: float.

graph-contour-start-other: Variable, Read/Write, Type: boolean.
228 Appendix A

The Classes

).

.
3D

do-qm-isosurface: Variable, Read/Write, Type: boolean.

isosurface-grid-step-size: Variable, R/W, Type: float in range (0 .. 1e+10)

isosurface-hide-molecule: Variable, Read/Write, Type: boolean

isosurface-map-function: Variable, Read/Write, Type: boolean

isosurface-map-function-display-legend: Variable, R/W, Type: boolean

isosurface-map-function-range: Variable, Read/Write, Type: float, float

isosurface-mesh-quality: Variable, Read/Write, Type: enum

isosurface-render-method: Variable, Read/Write, Type: enum

isosurface-threshold: Variable, Read/Write, Type: float.

isosurface-transparency-level: Variable, R/W, Type: float in range (0 .. 1)

isosurface-x-min: Variable, Read/Write, Type: float.

isosurface-x-nodes: Variable, R/W, Type: integer in range (0 .. 32767).

isosurface-y-min: Variable, Read/Write, Type: float.

isosurface-y-nodes: Variable, R/W, Type: integer in range (0 .. 32767).

isosurface-z-min: Variable, Read/Write, Type: float.

isosurface-z-nodes: Variable, R/W, Type: integer in range (0 .. 32767).

Grid

graph-data-row: Variable, Readonly, Type: vector of float-list.

graph-horizontal-grid-size: Variable, R/W, Type: integer in (2 .. 8192).

graph-plane-offset: Variable, Read/Write, Type: float.

graph-vertical-grid-size: Variable, R/W, Type: integer in range (2 .. 8192

grid-max-value: Variable, Readonly, Type: float.

grid-min-value: Variable, Readonly, Type: float.

isosurface-grid-step-size: Variable, R/W, Type: float in range (0 .. 1e+10)
Classification of Hcl Commands 229

The Classes
230 Appendix A

Tcl
nal

h
ed.
Appendix B

Listing of Tcl Commands

The Tcl Commands

In this appendix we give a very brief alphabetic list of the most important
commands and functions. They are listed with their arguments, with optio
arguments in angular brackets. However, no detailed description of eac
command is given here and a reference book on Tcl is strongly suggest

abs (x)

acos (x)

append varName value <value …>

asin (x)

atan(x)

atan2 (x,y)

break

catch command <varName>

cd <dirName>

ceil (x)

close fileId

concat <list list …>

continue

cos (x)

cosh (x)

double (i)

eof fileId
231

The Tcl Commands
error message <info> <code>

eval arg <arg arg …>

exec <-keepnewline> <- -> <arg ..>

exit <code>

exp (x)

expr arg <arg arg …>

file atime name

file dirname name

file executable name

file exists name

file extension name

file isdirectory name

file isfile name

file lstat name arrayName

file mtime name

file option name <arg arg …>

file owned name

file readable name

file readlink name

file rootname name

file size name

file stat name arrayName

file tail name

file type name

file writable name

floor (x)

flust file Id

fmod (x,y)

for init test reinit body
232 Appendix B

The Tcl Commands

<-
foreach varName list body

format formatString <value value …>

gets file Id <varName>

glob <-nocomplain> <- -> pattern <pattern …>

global name1 <name2 …>

hypot (x,y)

if test1 body1 <elseif test2 body2 elseif …> <else bodyn>

incr varName <increment>

int (x)

join list <joinString>

lappend varName value <value …>

lindex list index

linsert list index value <value …>

list <value value…>

llength list

log (x)

log10 (x)

lrange list first last

lreplace list first last <value value …>

lsearch <-exact> <-glob> <-regexp> list pattern

lsort <-ascii> <-integer> <-real> <-command command>\ <-increasing>
decreasing> list

open l command <access>

open name <access>

pid <fileId>

pow (x,y)

proc name argList body

puts <-nonewline> <fileId> string

pwd
Listing of Tcl Commands 233

The Tcl Commands

Var
read <-nonewline> fileId

read fileId numBytes

regexp <-indices> <-nocase> <- -> exp string <matchVar> \ <subVar sub
…>

regsub <-all> <-nocase> <- -> exp string subSpec varName

return <-code code> <-errorinfo info> <-errorcode code> <string>

return <options> <value>

round (x)

scan string format varName <varName varName …>

seek fileId offset <origin>

set varName <value>

sin (x)

sinh (x)

source fileName

split string <splitChars>

sqrt (x)

string compare string1 string2

string first string1 string2

string index string charIndex

string last string1 string2

string length string

string match pattern string

string range string first last

string tolower string

string toupper stsring

string trim string <chars>

string trimleft string <chars>

string trimright striing <chars>

switch <options> string pattern body <pattern body …>
234 Appendix B

The Tcl Commands
switch <options> string (pattern body <pattern body …>)

tan (x)

tanh (x)

tell fileId

unset varName <varName varName …>

uplevel <level> arg <arg arg …>

upvar <level> otherVar1 my Var1 <otherVar2 myVar2 …>

while test body
Listing of Tcl Commands 235

The Tcl Commands
236 Appendix B

se,
ord-
m

e
Appendix C

Classification of HAPI Calls

This appendix lists each of the HAPI calls and gives details as to their u
their declaration and their parameters. The HAPI calls are classified acc
ing to their use. Visual Basic Arguments listed as N/A can be inferred fro
the corrsponding C/C++ call.

The API functions

Functions for Initialization and Termination

The functions in this group are responsible for initialization of the HAPI
library, establishing a connection with HyperChem and termination of th
connection.

hcInitAPI
The function performs initialization of the HAPI.

API header

BOOL _stdcall hcInitAPI()

FORTRAN interface

logical function hfInitAPI()

VISUAL BASIC declaration

Declare Function hbInitAPI Lib "hapi.dll" Alias "hcInitAPI" () As Long
237

The API functions

em.

c-
 of
e
-

em.
nc-

ing (
Parameters

The function takes no parameters.

Return Value

The function returns TRUE if initialization was successful. The function
returns FALSE if the user application is already connected with HyperCh

Remarks

There is no need for explicitly calling the function if you use any of the re
ommended methods described in the section “How to use the CDK API”
Chapter 11. Both LoadHAPI and automatic DLL initialization code call th
function. However the call may be required if you perform your own Run
Time Load for an unusual application.

hcConnect
The function establishes a link between the user application and HyperCh
It must be called before ANY other function is called except for auxiliary fu
tions.

API header

BOOL _stdcall hcConnect(LPSTR lszCmd);

FORTRAN interface

logical function hfConnect(init_string)

character*(*) init_string

VISUAL BASIC declaration

Declare Function hbConnect Lib "hapi.dll" Alias "hcConnect" (ByVal command As

String) As Long

Parameters

C/C++: LPSTR lszCmd - command line received from HyperChem or empty str
“”). See Remarks.
238 Appendix C

The API functions

 a

he
ith

ppli-

 has

s a
o an
s.

hem

xil-
e to
e

ror
FORTRAN: character*(*) init_string - command line received from HyperChem or empty

string (Fortran string). See Remarks.

VB: command - VB variable of string type

Return Value

The function returns TRUE(1) when it finds HyperChem and establishes
connection to it. When it fails, it returns FALSE(0).

Remarks

The command line string lszCmd is received from HyperChem when the
application is called via the ‘execute-hyperchem-client’ script command. T
string contains the information required to connect the user application w
a proper instance of HyperChem. When HyperChem initiates the user a
cation after issuing a script command:

execute-hyperchem-client userapp.exe

the user application receives a command line parameter. The parameter
the form:

-hinst:ChemServer-xxxx

For example:

-hinst:ChemServer-510e

The user application should read the command line and simply pass it a
parameter to hcConnect. If the parameter is not passed (lszCmd points t
empty string “”), the HAPI connects to the first HyperChem instance it find
This may cause problems when there are more than one active HyperC
on the desktop.

If the flag errACTION_MESS_BOX is raised for error processing (see Au
iary functions) the HAPI displays a message box if the function is not abl
establish a connection with HyperChem. The action then depends on th
user’s choice (Abort/Retry/Ignore).

When the user ignores the message, hcConnect returns FALSE. See Er
processing section for details.
Classification of HAPI Calls 239

The API functions

d by

ses
n
s
See Also

hcDisconnect, hcSetErrorAction, hcLastError

hcDisconnect
The function hcDisconnect closes the connection with HyperChem opene
hcConnect.

API header

BOOL hcDisconnect(void);

FORTRAN interface

logical function hfDisconnect()

VISUAL BASIC declaration

Declare Function hbDisconnect Lib "hapi.dll" Alias "hcDisconnect" () As Long

Parameters

The function takes no parameters

Return Value

The function returns TRUE if the disconnecting was successful.

Remarks

The function is called automatically when errors occurs and the user choo
ABORT as an action. The application should always close the connectio
before it exits, otherwise the number of open but not used DDE channel
would grow unnecessarily.

See Also

hcConnect
240 Appendix C

The API functions

ar

ction
hcExit
This function causes an immediate exit from the application that calls it.

API header

void hcExit(void);

FORTRAN interface

subroutine hfExit()

VISUAL BASIC declaration

Declare Sub hbExit Lib "hapi.dll" Alias "hcExit" ()

Parameters

The function takes no parameters.

Remarks

The function should be treated as an emergency exit rather than a regul
method of exiting program operation.

Functions for Text-based Communication

hcExecTxt
This function executes a HyperChem command in a text format. The fun
is also used for updating HSV values using a text format.

API header

BOOL hcExecTxt(LPSTR script_cmd);

FORTRAN interface

logical function hfExecTxt(script_cmd)

character*(*) script_cmd
Classification of HAPI Calls 241

The API functions

 be

.

o-
 call

f a
tion

 for
the
VISUAL BASIC declaration

Declare Function hbExecTxt Lib "hapi.dll" Alias "hcExecTxt" (ByVal script_cmd

As String) As Long

Parameters

C/C++: The parameter is a NULL terminated string containing the command to
executed.

FORTRAN: The parameter is Fortran string containing the command to be executed

VB: The parameter is VB string containing the command to be executed

Return Value

The function returns TRUE (1) upon successful completion. If there is an
error, the user is notified by the appropriate message-box. If the error pr
cessing level is set to errACTION_NO (see SetErrorAction), the user may
hcLastError for info about the error.

Remarks

The update of an HSV variable is conceptually similar to the execution o
command. Hence, to set the value of an HSV variable the user’s applica
might use the following syntax:

result=hcExecTxt(�coordinates(1,2)=0.1,0.2,0.3�)

for setting the coordinates of atom 1 in molecule 2 to (0.1,0.2,0.3).

Some commands may take time to complete. The regular time-out value
command completion is set at about 65 seconds. The user may extend
time-out by calling hcSetTimeouts.

See Also

hcQueryTxt, hcExecBin

hcQueryTxt
The function queries for a value of an HSV variable in text mode.
242 Appendix C

The API functions

 in

n

 to
not
at-

llo-
ing
ll.

er,
an
g,

sis’
API header

LPSTR hcQueryTxt(LPSTR hsv);

FORTRAN interface

logical function hfQueryTxt(hsv, res)

character*(*) hsv,res

VISUAL BASIC declaration

Declare Function hbQueryTxt Lib "hapi.dll" Alias "hcQueryTxt" (ByVal command

As String) As String

Parameters

C/C++: Null terminated string containing HSV to be queried. May contain indices
the case of vector and array variables.

FORTRAN: ‘hsv’ is a Fortran string containing the HSV to be queried. ‘res’ is a Fortra
string where the output is placed.

VB: VB String containing HSV name to be queried.

Return Value

In the C, C++, or VB version , the function allocates the memory required
hold the answer and returns a pointer or a NULL pointer if the answer is
valid. However, the Fortran interface receives logical .true. or .false. indic
ing successful or unsuccessful completion of the function.

Remarks

When accessed from C/C++, the function returns a pointer to the newly a
cated memory. Hence, the calling application is responsible for deallocat
this particular memory block after it has been used, using the hcFree ca

The Fortran interface deallocates the memory block automatically. Howev
it is the calling application’s responsibility to pass a reference to the Fortr
string (‘res’) of sufficient length. If the answer is longer than provided strin
the output is truncated.

When Querying for elements of vectors and arrays, the regular ‘parenthe
syntax is used. For example:

txt_xyz=hcQueryTxt(“coordinates(1,2)”);

for querying the coordinates of atom 1 in molecule 2.
Classification of HAPI Calls 243

The API functions

an
ck

ata

nt
’ is
pes,
 the
See Also

hcQueryBin; see remarks for hcExecTxt for information about modifying
HSV values.

Functions for Binary Communication

Binary Execute and Query

hcExecBin
This function executes a binary representation of a script command.

API header

BOOL hcExecBin(HSV cmd, LPV args, DWORD args_length);

FORTRAN interface

logical function hfExecBin(cmd,args,args_length)

integer cmd,args,args_length

dimension args(args_length)

VISUAL BASIC declaration

Declare Function hbExecBin Lib "hapi.dll" Alias "hcExecBin" (ByVal cmd As Long,

ByRef args As IntBuff, ByVal args_length As Long) As Long

Parameters

C/C++: ‘cmd’ specifies the HSV code. The calling application should include
‘hsv.h’ file to have the codes available. ‘args’ is a pointer to memory blo
containing possible arguments. ‘args_length’ is the total length of valid d
pointed to by ‘args’.

FORTRAN: The calling application should include an ‘hsv.fi’ file to have the releva
HSV codes available. The difference in the Fortran interface is that ‘args
the reference to integer array. When transfering arguments of different ty
the user has to use an equivalence instruction to pack the array with
required data type.

VB: The �cmd� and �args_length� parameters have the same meaning as for C and
244 Appendix C

The API functions

ar to
ever,
ary

 for
the
Fortran. The �args� parameter is of �IntBuff� type. This user defined Visual

Basic type is defined in �hsv.bas� module file.

Return Value

The function returns TRUE when successfully completed.

Remarks

The function may be used to update the values of an HSV variable, simil
the update via the use of hcExecTxt. Data may need to be packed. How
it is highly recommended that you use instead the functions from the Bin
Get/Set group, which perform all required packing internally.

Some commands may take time to complete. The regular time-out value
command completion is set at about 65 seconds. The user may extend
time-out by calling hcSetTimeouts

See Also

hcQueryBin, hcGetxxx and hcSetxxx functions

hcQueryBin
The function queries for the binary value of an HSV of any type.

API header

void* hcQueryBin(int hsv,int indx1,int indx2,int* resp_length);

FORTRAN interface

logical function hfQueryBin(hsv,indx1,indx2,result,resp_length)

integer hsv,indx1,indx2,resp_length,result

dimension result(resp_length)

VISUAL BASIC declaration

Declare Function hbQueryBin Lib "hapi.dll" Alias "hfQueryBin" (ByVal var As

Long, ByVal indx1 As Long, ByVal indx2 As Long, ByRef result As IntBuff, ByRef

cbL As Long) As Long
Classification of HAPI Calls 245

The API functions

for
ies
th
 the
the
er is

in
ray
th’

ive.
tes

ed
ery

o

spec-
le-

ery
Parameters

C/C++: ‘hsv’ - the binary code for HSV to be queried. ‘indx1’, ‘indx2’ the indexes
vector and array HSVs conforming the rules: indx1=0, indx2=0 - quer
scalar HSV, entire vector or entire array; indx1=n,indx2=0 - queries n-
element of the vector HSV; indx1=m, indx2=n - get m,n-th element of
array HSV. ‘resp_length’ is the pointer to an integer variable where
length of the memory allocated by the function and returned as a point
stored.

FORTRAN: The arguments: ‘hsv’, ‘indx1’ and ‘indx2’ have identical meaning as
C/C++ case. The fourth argument, ‘result’ is a reference to the integer ar
that will receive the result of the query. The fifth argument, ‘resp_leng
should contain maximum number of bytes that ‘result’ array can rece
Upon successful completition ‘resp_length’ will hold the number of by
received.

VB: The �var�, �indx1� and �indx2� have the same meaning as for C/C++ and

Fortran. �result� is a variable of the �IntBuff� type defined in hsv.bas. See

remarks to hcExecBin for explanations. The fifth argument, �resp_length�

should contain maximum number of bytes that �result� array can receive.

Return Value

In the C/C++ case the function returns the pointer to the memory allocat
to hold the result of the query. A null value indicates failure during the qu
operation. In the Fortran and VB interface the function returns 1 if it was
completed successfully and 0 otherwise.

Remarks

In the C/C++ case the function allocates a required memory block and
returns the resultant pointer. It is the calling application’s responsibility t
free the memory when it is no longer needed, by calling hcFree.

When querying for vector and array variable with indexes (indx1 and/or
indx2 set to zero) the result of the query contains all of the elements of re
tive variable. If it is an array, the atom indices change faster than the mo
cule indices.

If, in the Fortran case, the size of ‘result’ is smaller than the size of the qu
results, only the first ‘resp_length’ bytes are actually transferred to the
‘result’ array.
246 Appendix C

The API functions

nd
de,
e all

ica-
ges
r’s

 that
See Also

hcExecBin, hcQueryTxt, hcGetxxx, hcSetxxx

Functions for Binary ‘Get’

This group of HAPI functions provide the easiest way for querying (Get) a
updating (Set) for HSV variables. The transfer is performed in binary mo
hence, it is the fastest method for exchanging data. The functions provid
the necessary low-level operations on the blocks of memory transferred
between a user application and HyperChem. This isolates the user appl
tion from the tedious task of preparing and interpreting the binary messa
used by a lower-level communication between HyperChem and the use
application.

hcGetInt
The function gets the value of a scalar HSV of integer type and returns
value.

API header

int hcGetInt(int hsv);

FORTRAN interface

integer function hfGetInt(hsv)

integer hsv

VISUAL BASIC declaration

Declare Function hbGetInt Lib "hapi.dll" Alias "hcGetInt" (ByVal hsv As Long)

As Long

Parameters

C/C++: HSV code of the variable

FORTRAN: HSV code of the variable

VB: HSV code of the variable
Classification of HAPI Calls 247

The API functions

ble
Return Value

The function returns the value of the HSV variable of integer type.

Remarks

See Also

hcSetInt, Appendix A for the types of HSV variables

hcGetReal

The function gets the value of a scalar HSV of floating point (dou
precision) type and returns this value.

API header

double hcGetReal(HSV var);

FORTRAN interface

double precision function hfGetReal (hsv)

integer hsv

VISUAL BASIC declaration

Declare Function hbGetReal Lib "hapi.dll" Alias "hcGetReal" (ByVal hsv As Long)

As Double

Parameters

C/C++: HSV code of the variable

FORTRAN: HSV code of the variable

VB: HSV code of the variable

Return Value

The function returns the double precision value of HSV variable.

Remarks
248 Appendix C

The API functions

 .

ied,

nal
.

r, if

the
 of
 the
See Also

hcSetReal

hcGetIntVec
The function gets the contents of the HSV variable of integer vector type

API header

int hcGetIntVec(HSV var, int* buff, int max_length);

FORTRAN interface

integer function hfGetIntVec (hsv, result, res_length)

integer hsv, result, res_length

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbGetIntVec Lib "hapi.dll" Alias "hcGetIntVec" (ByVal hsv As

Long, ByRef buff As IntBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the vector is cop
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensio
integer array to receive the vector, ‘res_length’ - the size of ‘result’ array

VB: The �hsv� and �max_length� have the same meaning as in the C/C++ case.

�buff� is of IntBuff type defined in �hsv.bas� module definition file.

Return Value

The function returns the number of integer words transfered to the buffe
the operation was completed successfuly, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff' - it assumes that
appropriate memory block pointed out by 'buff' was allocated and is
'max_length' size. If the amount of integer words in the HSV is larger than
Classification of HAPI Calls 249

The API functions

me

type.

ed,

ger
.

r, if

the
buffer, only the first 'max_length' words are copied into buffer. the sa
applies to the Fortran ‘result’ and ‘res_length’ variables.

See Also

hcSetIntVec, hcGetIntVecElm, hcGetIntArray, hcSetIntArray

hcGetIntArr
The function gets the contents of the HSV variable of the integer array

API header

int hcGetIntArr(HSV var, int* buff, int max_length);

FORTRAN interface

integer function hfGetIntArr (hsv, result, res_length)

integer hsv, result, res_length

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbGetIntArr Lib "hapi.dll" Alias "hcGetIntArr" (ByVal var As

Long, ByRef buff As IntBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the array is copi
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘result’ - one dimensional inte
array to receive the HSV array, ‘res_length’ - the size of the ‘result’ array

VB: N/A

Return Value

The function returns the number of integer words transferred to the buffe
the operation was completed successfuly, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff' - it assumes that
250 Appendix C

The API functions

 of
 the
lies

.

y,

SV
appropriate memory block pointed out by 'buff' was allocated and is
'max_length' size. If the amount of integer words in the HSV is larger than
buffer, only first 'max_length' words are copied into buffer. The same app
to the Fortran ‘result’ and ‘res_length’ variables.

See Also

hcGetIntArrElm, hcSetIntArr, hcSetIntArrElm

hcGetIntArrElm
The function gets the contents of the HSV variable of integer array type

API header

int hcGetIntArrElm(HSV var, int atom_index, int molecule_index);

FORTRAN interface

integer function hfGetIntArrElm(hsv, atom_index, mol_index)

integer hsv, atom_index, mol_index

VISUAL BASIC declaration

Declare Function hbGetIntArrElm Lib "hapi.dll" Alias "hcGetIntArrElm" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
‘molecule_index’ - index for the column of the array.

FORTRAN: ‘hsv’ - the HSV code for the array variable, 'atom_index' - index for the row
of array, ‘mol_index’ - index for the column of the array.

VB: N/A

Return Value

The function returns the integer value of the element of the array H
variable of type integer.
Classification of HAPI Calls 251

The API functions

dex.

uble

ied,

ble
ult’
Remarks

HSV arrays are always the arrays with atom-in-molecule and molecule in
Both indices run from 1 to number of respective elements.

See Also

hcSetIntArrElm, hcGetInt, hcGetIntArr, hcSetInt, hcSetIntArr

hcGetRealVec
The function gets the contents of the HSV variable of the real (do
precision) vector type.

API header

int hcGetRealVec(HSV var, double* buff,int max_length);

FORTRAN interface

integer function hfGetRealVec (hsv, result, res_length)

integer hsv, res_length

double precision result

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbGetRealVec Lib "hapi.dll" Alias "hcGetRealVec" (ByVal var

As Long, ByRef buff As DblBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the vector is cop
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional dou
precision array to receive the HSV vector, ‘res_length’ - the size of ‘res
array.

VB: N/A
252 Appendix C

The API functions

 the

the
 of
V is
fer.

rXYZ,

uble

ed,
Return Value

The function returns the number of double precision words transfered to
buffer, if the operation was completed successfully, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff' - it assumes that
appropriate memory block pointed out by 'buff' was allocated and is
'max_length' size. If the amount of double precision words in the HS
larger than the buffer, only first 'max_length' words are copied into buf
the same applies to Fortran ‘resul’ and ‘res_length’ variables.

See Also

hcGetRealVecElm, hcSetRealVec, hcGetReal, hcSetReal, hcGetRealAr
hcSetRealArrXYZ

hcGetRealArr
The function gets the contents of the HSV variable of the real (do
precision) array type.

API header

int hcGetRealArr(HSV var, double* buff,int max_length);

FORTRAN interface

integer function hfGetRealVec (hsv, result, res_length)

integer hsv, res_length

double precision result

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbGetRealArr Lib "hapi.dll" Alias "hcGetRealArr" (ByVal var

As Long, ByRef buff As DblBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the array is copi
'max_length' - the size of 'buff'
Classification of HAPI Calls 253

The API functions

ble
ult’

 the

the
 of
V is
er.

eal

HSV
FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional dou
precision array to receive the HSV vector, ‘res_length’ - the size of ‘res
array.

VB: N/A

Return Value

The function returns the number of double precision words transfered to
buffer, if the operation was completed successfuly, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff' - it assumes that
appropriate memory block pointed out by 'buff’ was allocated and is
'max_length' size. If the amount of double precision words in the HS
larger than the buffer, only first 'max_length' words are copied into buff
The same applies to Fortran ‘result’ and ‘res_length’ variables.

See Also

hcGetRealArrElm, hcSetRealArr, hcSetRealArrElm, hcSetReal, hcGetR

hcGetIntVecElm
The function gets the integer value of an element of the vector-type
variable.

API header

int hcGetIntVecElm(HSV var,int index);

FORTRAN interface

integer function hfGetIntVecElm (hsv, index)

integer hsv, index

VISUAL BASIC declaration

Declare Function hbGetIntVecElm Lib "hapi.dll" Alias "hcGetIntVecElm" (ByVal

var As Long, ByVal index As Long) As Long
254 Appendix C

The API functions

ent

le of

al to

HSV
Parameters

C/C++: 'var' - the HSV code, 'index' - points out the element to be retrieved.

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘index’ - points out the elem
to be retrieved.

VB: N/A

Return Value

The function returns the integer value of the element of an HSV variab
integer type.

Remarks

The first element of the vector is referred to as an element with index equ
one.

See Also

hcGetInt, hcSetInt, hcSetIntVecElm, hcGetIntVecElm

hcGetRealVecElm
The function gets the value of a double-precision element of a vector
variable..

API header

double hcGetRealVecElm(HSV var,int index);

FORTRAN interface

double precision function hfgetRealVecElm (hsv, index)

integer hsv, index

VISUAL BASIC declaration

Declare Function hbGetRealVecElm Lib "hapi.dll" Alias "hcGetRealVecElm" (ByVal

var As Long, ByVal index As Long) As Double
Classification of HAPI Calls 255

The API functions

nt.

HSV

al to

c

pe).

y,
Parameters

C/C++: 'var' - the HSV code, 'index' - points out the element to be retrieved.

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘index’ - points out the eleme

VB: N/A

Return Value

The function returns the double precision value of the element of the
vector of real type.

Remarks

The first element of the vector is refered to as an element with index equ
one.

See Also

hcSetRealVecElm, hcGetReal, hcSetReal, hcGetRealVec, hcSetRealVe

hcGetRealArrElm
The function gets an element of an array HSV of real (double precision ty

API header

double hcGetRealArrElm(HSV var,int atom_index,int molecule_index);

FORTRAN interface

integer function hfgetRealArrElm(hsv, atom_index, molecule_index)

integer hsv, atom_index, molecule_index

VISUAL BASIC declaration

Declare Function hbGetRealArrElm Lib "hapi.dll" Alias "hcGetRealArrElm" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long) As Double

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
256 Appendix C

The API functions

ow

rray

ex.

nt of
sian
'molecule_index' - index for the column of the array

FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘atom_index’ - index for the r
of array, ‘molecule_index’ - index for the column of the array.

VB: N/A

Return Value

The function returns the double precision value of the element of the a
HSV variable of real type.

Remarks

HSV arrays are always arrays with atom-in-molecule and molecule ind
Both indices run from 1 to number of respective elements.

See Also

hcSetRealArrElm, hcGetReal, hcGetRealArr, hcSetReal, hcSetRealArr

hcGetRealArrXYZ
The function gets the three reals (double precision) that form an eleme
the array HSV variable. It's designed almost exclusively for getting Carte
coordinates of an atom.

API header

int hcGetRealArrXYZ(HSV var,int atom_index,int molecule_index, double* x,

double* y, double* z);

FORTRAN interface

logical function hfGetrealArrXYZ (hsv, atom_index, molecule_index, x, y, z)

integer hsv, atom_index, molecule_index

double precision x, y, z

VISUAL BASIC declaration

Declare Function hbGetRealArrXYZ Lib "hapi.dll" Alias "hcGetRealArrXYZ" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long, ByRef x

As Double, ByRef y As Double, ByRef z As Double) As Long
Classification of HAPI Calls 257

The API functions

y,
s to

y,
e

exed
r the
ting
atom

 HSV
Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
'molecule_index' - index for the column of the array, 'x' , 'y' and 'z' pointer
double precision words where the results will be placed.

FORTRAN: ‘hsv’ - the HSV code, ‘atom_index’ - index for the row of the arra
‘molecule_index’ - index for the column of the array, ‘x’, ‘y’, and ‘z’ - doubl
precision variables that receive the results.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The coordinates of atoms are represented in HyperChem as an array ind
bythe atom-in-molecule number and the molecule number. Howeve
element of the array is not a number but a triple of numbers represen
three cartesian components of the position of the atom in space. Both
and molecule indices run from 1 tothe respective number of elements.

See Also

hcSetRealArrXYZ, hcGetRealArr, hcSetRealArr

hcGetRealVecXYZ
The function gets the three components of the elements of a vector
variable.

API header

int hcGetRealVecXYZ(HSV var,int atom_index,double* x, double* y, double* z);

FORTRAN interface

logical function hfGetRealVex\cXYZ (hsv, index, x, y, z)

integer hsv, index

double precision x, y, z
258 Appendix C

The API functions

and

 -

ually
 from

ec
VISUAL BASIC declaration

Declare Function hbGetRealVecXYZ Lib "hapi.dll" Alias "hcGetRealVecXYZ" (ByVal

var As Long, ByVal index As Long, ByRef x As Double, ByRef y As Double, ByRef

z As Double) As Long

Parameters

C/C++: 'var' - the HSV code, 'index' - index for the element of the vector, 'x' , 'y'
'z' pointers to double precision words where the results will be placed.

FORTRAN: ‘hsv’ - the HSV code, ‘index’ - index of the vector element, ‘x’, ‘y’, and ‘z’
double precision values that receive the results.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

Some properties in HyperChem are represented as a vector of triples us
representing three cartesian components of the property. The index runs
1 to the respective number of elements.

See Also

hcSetRealVecXYZ, hcGetReal, hcSetReal, hcGetRealVec, hcSetRealV

hcGetStr
This function retrives the contents of the HSV variable of string type.

API header

int hcGetStr(HSV var,char* buff,int max_length);

FORTRAN interface

integer function hfGetStr(hsv, result, res_length)

cahracter*(*) result
Classification of HAPI Calls 259

The API functions

ied,

ied,

 the

the
 of
 the

iable
VISUAL BASIC declaration

Declare Function hbGetStr Lib "hapi.dll" Alias "hcGetStr" (ByVal var As Long,

ByVal buff As String, ByVal max_length) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the string is cop
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code, ‘result’ - character array where the string is cop
‘res_length’ - the length of the ‘result’ string.

VB: N/A

Return Value

The function returns the number of charactesr copied into the buffer if
operation was sucessful or zero otherwise.

Remarks

The function does not allocate memory for 'buff' - it assumes that
appropriate memory block pointed out by 'buff' was allocated and is
'max_length' size. If the number of characters in the HSV is larger than
buffer, only first 'max_length' bytes are copied into buffer.

See Also

hcSetStr, hcSetBlock, hcGetBlock

hcGetStrVecElm
The function retrives the contents of the element of the vector HSV var
of string type.

API header

int hcGetStrVecElm(HSV var, int index, char* buff, int max_length);

FORTRAN interface

integer function hfGetStrVecElm(hsv, index, result, res_length)

integer hsv, index, res_length
260 Appendix C

The API functions

uff'
buff'

ult’
sult’

 the

the
 of
 the

le of
character*(*) result

VISUAL BASIC declaration

Declare Function hbGetStrVecElm Lib "hapi.dll" Alias "hcGetStrVecElm" (ByVal

var As Long, ByVal index As Long, ByVal buff As String, ByVal max_length As

Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'index' - points out the element to be retrieved, 'b
pointer to the buffer where the string is copied, 'max_length' - the size of '

FORTRAN: ‘hsv’ - the HSV code, ‘index’ - pointsout the element to be retreived, ‘res
- character array where the string is copied, ‘res_length’ - the length of’re
array.

VB: N/A

Return Value

The function returns the number of characters copied into the buffer if
operation was sucessful or zero otherwise.

Remarks

The function does not allocate memory for 'buff' - it assumes that
appropriate memory block pointed out by 'buff' was allocated and is
'max_length' size. If the number of characters in the HSV is larger than
buffer, only first 'max_length' bytes are copied into buffer.

The first element of the vector has index equal to one.

See Also

hcSetStrVecElm, hcGetStr, hcSetStr

hcGetStrArrElm
The function retrives the contents of the element of the array HSV variab
string type.
Classification of HAPI Calls 261

The API functions

y,
the

x’
g is

the

the
 of
 the
API header

int hcGetStrArrElm(HSV var, int atom_index, int molecule_index, char* buff,

int max_length);

FORTRAN interface

integer function hfGetStrArrElm(hsv,atom_index,mol_index,result,res_length)

integer hsv, atom_index, mol_index, res_length

character*(*) result

VISUAL BASIC declaration

Declare Function hbGetStrArrElm Lib "hapi.dll" Alias "hcGetStrArrElm" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long, ByVal buff

As String, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
'molecule_index' - index for the column of the array, 'buff' pointer to
buffer where the string is copied, 'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code, ‘atom_index’ - index for the row of array, ‘mol_inde
- index for the column of array, ‘result’ - character array where the strin
copied, ‘res_length’ - the length of’result’ array.

VB: N/A

Return Value

The function returns the number of characters copied into buffer if
operation was sucessful or zero otherwise.

Remarks

The function does not allocate memory for 'buff' - it assumes that
appropriate memory block pointed out by 'buff' was allocated and is
'max_length' size. If the number of characters in the HSV is larger than
buffer, only first 'max_length' bytes are copied into buffer.

Both indices start with one.

See Also

hcSetStrArrElm, hcSetStr, hcGetStr
262 Appendix C

The API functions

f its

ied,

a is

e of
was
er's
nd
hcGetBlock
The function retrives the contents of the whole HSV variable irrespetiv o
type.

API header

int hcGetBlock(HSV var, char* buff, int max_length);

FORTRAN interface

integer function hfgetBlock(hsv, result, res_length)

integer*1 result

VISUAL BASIC declaration

Declare Function hbGetBlock Lib "hapi.dll" Alias "hcGetBlock" (ByVal var As

Long, ByVal buff As String, ByVal max_length) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the data is cop
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code, ‘result’ - the integer*1 (byte) array where the dat
copied, ‘res_length’ - the size of the result.

VB: N/A

Return Value

The function returns the number of bytes copied into the buffer.

Remarks

Some HSV variables, particularly some vectors and arrays, have the typ
element which is not just an integer, real or string. The hcGetBlock
provided to get access to that kind of variable. However, the us
application is responsible for the interpretation of the data in the block a
the proper "sorting-out" of individual elements of the block.

See Also

hcSetBlock, hcQueryBin
Classification of HAPI Calls 263

The API functions

he

the

the
Functions for Binary ‘Set’

hcSetInt
The function updates the scalar HSV of integer type.

API header

int hcSetInt(int var,int value);

FORTRAN interface

logical function hfSetInt(hsv, value)

integer hsv, value

VISUAL BASIC declaration

Declare Function hbSetInt Lib "hapi.dll" Alias "hcSetInt" (ByVal hsv As Long,

ByVal value As Long) As Long

Parameters

C/C++: ‘var’ - HSV code of the variable to be modified, ‘value’ - new value for t
variable.

FORTRAN: ‘hsv’ - HSV code of the variable to be modified, ‘value’ - new value for
variable.

VB: ‘var’ - HSV code of the variable to be modified, ‘value’ - new value for
variable.

Return Value

The function returns 1 if the update was successful or 0 if it failed.

Remarks

See Also

hcGetInt, Appendix A for the types of HSV variables
264 Appendix C

The API functions

ion)

he

the

the
hcSetReal
The function updates the scalar HSV of floating point (double precis
type.

API header

int hcSetReal(int var,double value);

FORTRAN interface

logical function hfSetReal(hsv, value)

integer hsv

double precision value

VISUAL BASIC declaration

Declare Function hbSetReal Lib "hapi.dll" Alias "hcSetReal" (ByVal hsv As Long,

ByVal value As Double) As Long

Parameters

C/C++: ‘var’ - HSV code of the variable to be modified, ‘value’ - new value for t
variable.

FORTRAN: ‘hsv’ - HSV code of the variable to be modified, ‘value’ - new value for
variable.

VB: ‘var’ - HSV code of the variable to be modified, ‘value’ - new value for
variable.

Return Value

The function returns 1 if the update was successful or 0 if it failed.

Remarks

See Also

hcGetReal
Classification of HAPI Calls 265

The API functions

e.

 the

nal
ult’

was

ents
ror.
hcSetIntVec
The function updates the vector HSV variable of the integer element typ

API header

int hcSetIntVec(HSV var, int* buff, int length);

FORTRAN interface

logical function hfSetIntVec(hsv, result, res_length)

integer hsv, result, res_length

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbSetIntVec Lib "hapi.dll" Alias "hcSetIntVec" (ByVal hsv As

Long, ByRef buff As IntBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer with the new contens for
vector, 'length' - the number of elements in the 'buff' buffer.

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensio
integer array containing data for the vector, ‘res_length’ - the size of ‘res
array.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
not updated.

Remarks

The user’s application is responsible for the appropriate number of elem
in the buffer. If the number was incorrect, HyperChem would signal an er

See Also

hcGetIntVec, hcSetIntVecElm, hcSetIntArray, hcGetIntArray,
hcSetIntVecElm
266 Appendix C

The API functions

e.

 the

ger
.

was

ents
ror.
hcSetIntArr
The function updates the array HSV variable of the integer element typ

API header

int hcSetIntArr(int var, int* buff, int length);

FORTRAN interface

logical function hfSetIntArr(hsv, result, res_length)

integer hsv, result, res_length

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbSetIntArr Lib "hapi.dll" Alias "hcSetIntArr" (ByVal var As

Long, ByRef buff As IntBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer with the new contens for
array, 'length' - the number of elements in the 'buff' buffer.

FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘result’ - one dimensional inte
array containing data for the array, ‘res_length’ - the size of ‘result’ array

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
not updated.

Remarks

The user’s application is responsible for the appropriate number of elem
in the buffer. If the number was incorrect, HyperChem would signal an er

See Also

hcSetIntArrElm, hcGetIntArr, hcGetIntArrElm
Classification of HAPI Calls 267

The API functions

eger

y,
lue

ay,
ger

was

dex.
hcSetIntArrElm
The function updates the element of the array HSV variable of the int
array type.

API header

int hcSetIntArrElm(HSV var, int atom_index, int molecule_index, int value);

FORTRAN interface

logical function hfSetIntArrElm(hsv, atom_index, mol_index, value)

integer hsv, atom_index, mol_index, value

VISUAL BASIC declaration

Declare Function hbSetIntArrElm Lib "hapi.dll" Alias "hcSetIntArrElm" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long, ByVal

value As Double) As Long

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
‘molecule_index’ - index for the column of the array, ‘value’ - the new va
for the variable.

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of arr
‘molecule_index’ - index for the column of the array, ‘value’ - the new inte
value for the variable.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
not updated.

Remarks

HSV arrays are always the arrays with atom-in-molecule and molecule in
Both indices run from 1 to number of respective elements.

See Also

hcGetIntArrElm, hcSetInt, hcSetIntArr, hcGetInt, hcGetIntArr
268 Appendix C

The API functions

uble

 the
 the

ble
f the

was

ents
ror.
hcSetRealVec
The function updates the contents of the HSV variable of the real (do
precision) type.

API header

int hcSetRealVec(int var, double* buff,int length);

FORTRAN interface

logical function hfSetRealVec(hsv, result, res_length)

integer hsv, res_length

double precision result

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbSetRealVec Lib "hapi.dll" Alias "hcSetRealVec" (ByVal var

As Long, ByRef buff As DblBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer with the new contens for
vector, 'length' - the number of elements (double precission words) in
'buff' buffer.

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional dou
precision array containing the data for the vector, ‘res_length’ - the size o
‘result’ array.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
not updated.

Remarks

The user’s application is responsible for the appropriate number of elem
in the buffer. If the number was incorrect, HyperChem would signal an er
Classification of HAPI Calls 269

The API functions

rrXYZ,

e.

 the
buff'

ble
f the

was
See Also

hcSetRealVecElm, hcGetRealVec, hcSetReal, hcGetReal, hcSetRealA
hcGetRealArrXYZ

hcSetRealArr
The function updates the HSV variable of the real (double precision) typ

API header

hcSetRealArr(int var, double* buff,int length);

FORTRAN interface

logical function hfSetRealArr(hsv, result, res_length)

integer hsv, res_length

double precision result

dimension result(res_length)

VISUAL BASIC declaration

Declare Function hbSetRealArr Lib "hapi.dll" Alias "hcSetRealArr" (ByVal var

As Long, ByRef buff As DblBuff, ByVal max_length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer with the new contens for
array, 'length' - the number of elements (double precission words) in the '
buffer.

FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘result’ - one dimensional dou
precision array containing the data for the array, ‘res_length’ - the size o
‘result’ array.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
not updated.
270 Appendix C

The API functions

ents
ror.

eal

ype.

e’ -

nt to

was
Remarks

The user’s application is responsible forthe appropriate number of elem
in the buffer. If the number was incorrect, HyperChem would signal an er

See Also

hcSetRealArrElm, hcGetRealArr, hcGetRealArrElm, hcGetReal, hcSetR

hcSetIntVecElm
The function updates the element of the vector HSV variable of integer t

API header

int hcSetIntVecElm(int var,int index,int value);

FORTRAN interface

logical function hfSetIntVecElm(hsv, index, value)

integer hsv, index, value

VISUAL BASIC declaration

Declare Function hbSetIntVecElm Lib "hapi.dll" Alias "hcSetIntVecElm" (ByVal

var As Long, ByVal index As Long, ByVal value As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'index' - points out the element to be updated, ‘valu
new value for the element.

FORTRAN: 'hsv' - the HSV code fo rthe vector variable, 'index' - points out the eleme
be updated, ‘value’ - new value for the element.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
not updated.
Classification of HAPI Calls 271

The API functions

ble-

e’ -

nt to

was
Remarks

The first element of the vector has an index equal to one.

See Also

hcSetInt, hcGetInt, hcGetIntVecElm, hcSetIntVecElm

hcSetRealVecElm
The function updates the element of the vector HSV variable of dou
precission type.

API header

int hcSetRealVecElm(int var,int index,double value);

FORTRAN interface

logical function hfSetRealVecElm(hsv, index, value)

integer hsv, index

double precision value

VISUAL BASIC declaration

Declare Function hbSetRealVecElm Lib "hapi.dll" Alias "hcSetRealVecElm" (ByVal

var As Long, ByVal index As Long, ByVal value As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'index' - points out the element to be updated, ‘valu
new value for the element.

FORTRAN: 'hsv' - the HSV code for the vector variable, 'index' - points out the eleme
be updated, ‘value’ - new double precision value for the element.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
272 Appendix C

The API functions

c

uble

y,
 for

x' -
not updated.

Remarks

The first element of the vector has index equal to one.

See Also

hcGetRealVecElm, hcSetReal, hcGetReal, hcSetRealVec, hcGetRealVe

hcSetRealArrElm
The function updates the element of the array HSV variable of real (do
precission type).

API header

int hcSetRealArrElm(int var,int atom_index,int molecule_index,double value);

FORTRAN interface

logical function hfSetRealVecElm(hsv, atom_index, mol_index, value)

integer hsv, atom_index, mol_index

double precision value

VISUAL BASIC declaration

Declare Function hbSetRealArrElm Lib "hapi.dll" Alias "hcSetRealArrElm" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long, ByVal

value As Double) As Double

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
'molecule_index' - index for the column of the array, value - the new value
the variable

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of array, 'mol_inde
index for the column of the array, value - the new value for the variable

VB: N/A
Classification of HAPI Calls 273

The API functions

was

le’

 real
g the

y,
ble

x' -
Return Value

The function returns 1 if the variable was updated successfully, or 0 if it
not updated.

Remarks

HSV arrays are always arrays with an ‘atom-in-molecule’ and a‘molecu
index. Both indices run from 1 to the number of respective elements.

See Also

hcGetRealArrElm, hcSetReal, hcSetRealArr, hcGetReal, hcGetRealArr

hcSetRealArrXYZ
The function updates an element of array HSV variable that has three
numbers as the element type. It's designed almost exclusively for updatin
cartesian coordinates for an atom

API header

int hcSetRealArrXYZ)(int var,int atom_index,int molecule_index,double x,

double y, double z);

FORTRAN interface

logical function hfSetRealArrXYX(hsv, atom_index, mol_index, x, y, z)

integer hsv, atom_index, mol_index

double precision x, y, z

VISUAL BASIC declaration

Declare Function hbSetRealArrXYZ Lib "hapi.dll" Alias "hcSetRealArrXYZ" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long, ByVal x

As Double, ByVal y As Double, ByVal z As Double) As Long

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
'molecule_index' - index for the column of the array, 'x' , 'y' and 'z' are dou
precision new values for the element.

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of array, 'mol_inde
274 Appendix C

The API functions

ew

exed
r the
ting
atom

 real
index for the column of the array, 'x' , 'y' and 'z' are double precision n
values for the element.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The coordinates of atoms are represented in HyperChem as an array ind
by the atom-in-molecule number and the molecule number. Howeve
element of the array is not a number but a triple of numbers represen
three Cartesian components of the position of the atom in space. Both
and molecule indices run from 1 to the respective number of elements.

See Also

hcGetRealArrXYZ, hcSetRealArr, hcGetRealArr

hcSetRealVecXYZ
The function updates an element of vector HSV variable that has three
numbers as the element type.

API header

int hcSetRealVecXYZ(int var,int index,double x, double y, double z);

FORTRAN interface

logical function hfSetRealVecXYX(hsv, index, x, y, z)

integer hsv, index

double precision x, y, z

VISUAL BASIC declaration

Declare Function hbSetRealVecXYZ Lib "hapi.dll" Alias "hcSetRealVecXYZ" (ByVal

var As Long, ByVal index As Long, ByVal x As Double, ByVal y As Double, ByVal

z As Double) As Long
Classification of HAPI Calls 275

The API functions

and

 and

ples,
ndex

ec
Parameters

C/C++: 'var' - the HSV code, 'index' - index for the element of the vector, 'x' , 'y'
'z' double precision new values for the element.

FORTRAN: 'hsv’ - the HSV code, 'index' - index for the element of the vector, 'x' , 'y'
'z' double precision new values for the element.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

Some properties in HyperChem are represented as the vector of tri
usually representing three Cartesian components of the property. The i
runs from 1 to the respective number of elements.

See Also

hcGetRealVecXYZ, hcSetReal, hcGetReal, hcSetRealVec, hcGetRealV

hcSetStr
The function updates the content of the HSV variable of string type.

API header

int hcSetStr(int var,char* string);

FORTRAN interface

logical function hfSetStr(hsv, buff)

integer hsv

character*(*) buff

VISUAL BASIC declaration

Declare Function hbSetStr Lib "hapi.dll" Alias "hcSetStr" (ByVal var As Long,

ByVal buff As String) As Long
276 Appendix C

The API functions

g

lue

ble of

 be
Parameters

C/C++: 'var' - the HSV code, 'string' pointer to the NULL-terminated strin
containing a new string.

FORTRAN: 'hsv' - the HSV code, 'buff' - Fortran character array containing the new va
of the string.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

See Also

hcGetStr, hcGetBlock, hcSetBlock

hcSetStrVecElm
The function updates the content of the element of the vector HSV varia
string type.

API header

int hcSetStrVecElm(int var, int index, char* string);

FORTRAN interface

logical function hfSetStrVecElm(hsv, index, buff)

integer hsv, index

character*(*) buff

VISUAL BASIC declaration

Declare Function hbSetStrVecElm Lib "hapi.dll" Alias "hcSetStrVecElm" (ByVal

var As Long, ByVal index As Long, ByVal buff As String, ByVal max_length As

Long, ByVal buff As String) As Long

Parameters

C/C++: 'var' - the HSV code, 'index' - points out the element of the variable to
Classification of HAPI Calls 277

The API functions

ew

o be

e.

y,
the
updated, 'string' pointer to the NULL-terminated string containing a n
string.

FORTRAN: 'hsv' - the HSV code, 'index' - points out the element of the variable t
updated, 'buff' - character array containing the Fortran string.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The first element of the vector has index equal to one.

See Also

hcGetStrVecElm, hcSetStr, hcGetStr

hcSetStrArrElm
The function updates the element of the array HSV variable of string typ

API header

int hcSetStrArrElm(int var,int atom_index, int molecule_index, char* string);

FORTRAN interface

logical function hfSetStrArrElm(hsv, atom_index, mol_index, buff)

integer hsv, atom_index, mol_index

character*(*) buff

VISUAL BASIC declaration

Declare Function hbSetStrArrElm Lib "hapi.dll" Alias "hcSetStrArrElm" (ByVal

var As Long, ByVal atom_index As Long, ByVal molecule_index As Long, ByVal buff

As String, ByVal max_length As Long, ByVal buff As String) As Long

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of arra
'molecule_index' - index for the column of the array, 'string' pointer to
278 Appendix C

The API functions

x' -
an

ly of

ied,

ta,
new, NULL-terminated string.

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of array, 'mol_inde
index for the column of the array, 'buff' - character array containing Fortr
string.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The both atom and molecule indices start with one.

See Also

hcGetStrArrElm, hcGetStr, hcSetStr

hcSetBlock
The function updates the contents of the whole HSV variable irrespevtive
its type.

API header

int hcSetBlock(int var, char* buff, int length);

FORTRAN interface

logical function hfSetBlock(hsv, buff, res_length)

integer*1 buff

VISUAL BASIC declaration

Declare Function hbSetBlock Lib "hapi.dll" Alias "hcSetBlock" (ByVal var As

Long, ByVal buff As String, ByVal max_length) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the data is cop
'length' - the size of 'buff' (in bytes)

FORTRAN: 'hsv' - the HSV code, 'buff' - integer*1 (byte) array containing the da
Classification of HAPI Calls 279

The API functions

e of
ss to
the
ual

ble.
‘res_length' - the size of 'buff' (in bytes)

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

Some HSV variables, particularly, some vectors and arrays have the typ
element which is not scalar. The hcGetBlock was provided to get acce
that kind of variable. However, the user's application is responsible for
interpretation of the data in the block and proper setting all of the individ
elements of the block.

See Also

hcGetBlock, hcQueryBin

Functions for Processing Notifications

hcNotifyStart
The function requests for notifications about any change of the HSV varia

API header

int hcNotifyStart(LPSTR var_name);

FORTRAN interface

logical function hfNotifyStart(hsv_name)

character*(*) hsv_name

VISUAL BASIC declaration

Declare Function hbNotifyStart Lib "hapi.dll" Alias "hcNotifyStart" (ByVal

var_name As String) As Long
280 Appendix C

The API functions

be

 HSV

.

Parameters

C/C++: ‘var_name’ - HSV name (text) for which notification is requested.

FORTRAN: ‘hsv_name’ - HSV name (text) for which notification is requested.

VB: N/A

Return Value

The function returns 1 if the notification request is accepted.

Remarks

The function simply request for notification. H how the notification will
processed is specified by the hcNotifySetup function.

See Also

hcNotifyStop, hcNotifySetup

hcNotifyStop
The function cancels the request for notifications about the change of the
variable.

API header

int hcNotifyStop(LPSTR var_name);

FORTRAN interface

logical function hfNotifyStop(hsv_name)

character*(*) hsv_name

VISUAL BASIC declaration

Declare Function hbNotifyStop Lib "hapi.dll" Alias "hcNotifyStop" (ByVal

var_name As String) As Long

Parameters

C/C++: ‘var_name’ - HSV name (text) for which notification request is cancelled
Classification of HAPI Calls 281

The API functions

tion

ss
ack
eter
FORTRAN: ‘hsv_name’ - HSV name (text) for which notification request is cancelled

VB: N/A

Return Value

The function returns 1 if the notification request was canceled.

Remarks

The function stops the notification irrespective of the method for notifica
processing.

See Also

hcNotifyStart, hcNotifySetup

hcNotifySetup
The function establishes how the notifications have to be processed.

API header

int hcNotifySetup(PFNB pCallBack,int NotifyWithText);

FORTRAN interface

logical function hfNotifySetup (FnCallback, TextAdviseFlag)

logical TextAdviseFlag

VISUAL BASIC declaration

Declare Function hbNotifySetup Lib "hapi.dll" Alias "hcNotifySetup" (ByVal clb

As Long, ByVal NotifyWithText As Long) As Long

Parameters

C/C++: ‘pCallBack’ - pointer to the callback function designed to proce
notifications. However, the user may provide NULL parameter for pCallB
and in this case the Notification Agent will be used. The last param
‘NotifyWithText’ orders text notifications if is 1 and binary if it is 0.
282 Appendix C

The API functions

ss
for
last
 is

 in

is
 the

not

ing
tion

sed
FORTRAN: ‘FnCallBack’ - pointer to the callback function designed to proce
notifications. However, the user may provide 0 as a parameter
FnCallBack and in this case the Notification Agent will be used. The
parameter ‘TextAdviseFlag’ orders text notifications if is 1 and binary if it
0.

VB: N/A

Return Value

The function returns 1 if the notification request was cancelled.

Remarks

The user application may define its own function to process notification
one of the forms:

typedef VOID (*PFNB)(int var, char* data, int length);
for the binary notifications, or:

typedef VOID (*PFNX)(char* name, char* data);
for the text notifications.

In both cases the notification agent will not be used and the application
responsible for processing, storing or buffering the incoming data through
callback function. This is the best method for processing notifications.

However, as it was noted in Chapter 11, many types of applications can
receive or properly process notifications. This include all console based
applications, FORTRAN programs, external Tcl/Tk programs etc. Provid
NULL as the callback address parameter automatically starts the Notifica
Agent (0 in Fortran).

See Also

hcNotifyStart, hcNotifyStop

hcNotifyDataAvail
The functions checks if the Notification Agent has any not-proces
notifications in its buffers.
Classification of HAPI Calls 283

The API functions

ise.

the
o the
API header

int hcNotifyDataAvail(void);

FORTRAN interface

integer function hfNotifyDataAvail()

VISUAL BASIC declaration

Declare Function hbNotifyDataAvail Lib "hapi.dll" Alias "hcNotifyDataAvail"

(ByVal var_name As String) As Long

Parameters

The function has no parameters

Return Value

The function returns 1 if there is any unprocessed notification or 0 otherw

Remarks

The application may call the function as often as required; a call to
function deschedules the time slicing of the Windows operating system, s
application does not consume much processing time.

See Also

hcNotifyStart, hcNotifySetup

hcGetNotifyData
The functions gets data arriving from a notification previously checked.

API header

int hcGetNotifyData(char* name,char *buffer, DWORD MaxBuffLength);
284 Appendix C

The API functions

ced.
ed,
an

ed.
d,
t (in

uffer

ided
 the
 for
.

FORTRAN interface

integer function hfGetNotifyData(name. result, res_length)

integer res_length

character*(*) name, result

VISUAL BASIC declaration

Declare Function hbGetNotifyData Lib "hapi.dll" Alias "hcGetNotifyData" (ByVal

name As String, ByVal buffer As String, ByVal MaxBuffLength As Long) As Long

Parameters

C/C++: ‘name’- is the address of the buffer where the name of the variable is pla
‘buffer’ - is the address of the buffer where incoming data will be copi
‘MaxBufferLength’ is the maximum size of the data block that ‘buffer’ c
accept.

FORTRAN: ‘name’- is the character array where the name of the variable is plac
‘result’ - is the character array where incoming data will be copie
‘res_length’ is the maximum size of the data block that ‘result’ can accep
bytes).

VB: N/A

Return Value

The function returns the number of bytes copied by the function to the b
‘buffer’.

Remarks

Each call to hcGetNotifyData copies the notification message to the prov
buffers and discards that message, deleting the appropriate buffers in
Notification Agent area. This means that the user’s application listening
notifications must properly process all discarded (and copied) messages

See Also

hcNotifyStart, hcNotifySetup, hcNotifyDataAvail
Classification of HAPI Calls 285

The API functions

he

ible
tion
Functions For Memory Allocation

hcAlloc
The function allocates a memory block.

API header

void* hcAlloc(size_t n_bytes);

FORTRAN interface

This function is unavailable for Fortran programs

VISUAL BASIC declaration

This function is unavailable for Visual Basic programs

Parameters

C/C++: ‘n_bytes’ number of bytes to allocate.

FORTRAN: N/A

VB: N/A

Return Value

The function returns a pointer to the allocated block, or NULL if t
allocation was not successful.

Remarks

The ‘hcAlloc’ allocates memory for both internal HAPI needs and poss
user requirements. However, the user may use regular C/C++ alloca
routines.

See Also

hcFree
286 Appendix C

The API functions

ll to

yTxt
hcFree
The function deallocates a block of memory previously allocated by a ca
hcAlloc.

API header

void hcFree(void* pointer);

FORTRAN interface

This function is unavailable for Fortran programs

VISUAL BASIC declaration

This function is unavailable for Visual Basic programs

Parameters

C/C++: ‘pointer’ is the pointer obtained by a previous call to hcAlloc.

FORTRAN: N/A

VB: N/A

Return Value

The function does not return any data.

Remarks

The main use for hcFree is after processing the data returned by hcQuer
and hcQueryBin. See description for these functions.

See Also

hcAlloc, hcQueryBin, hcQueryTxt
Classification of HAPI Calls 287

The API functions

 be

play
Auxiliary Functions

hcShowMessage
The function displays message box with provided string.

API header

void hcShowMessage(LPSTR message);

FORTRAN interface

subroutine hfShowMessage(str)

character*(*) str

VISUAL BASIC declaration

This function is useless for Visual Basic programs

Parameters

C/C++: ‘message’ points to NULL terminated string containing message to
displayed.

FORTRAN: ‘str’ - Fortran string containing the message to display.

VB: N/A

Return Value

The function does not return any data.

Remarks

The function may be useful for debuging programs that cannot easily dis
regular Windows messages (like most console-based programs).

See Also
288 Appendix C

The API functions

types

n of
 (in
t’ is
tion

of
(in
ew

sts,

this
, the

 any
hcSetTimeouts
The function sets new timeout values for execution, querying and other
of communication.

API header

void hcSetTimeouts(int ExcTimeOut,int QryTimeOut,int RstTimeOut);

FORTRAN interface

subroutine hfSetTimeouts(t_exc, t_qry, t_other)

integer t_exc, t_qry, t_other

VISUAL BASIC declaration

Declare Function hbSetTimeouts Lib "hapi.dll" Alias "hcSetTimeouts" (ByVal

ExcTimeOut As Long, ByVal QryTimeOut As Long, ByVal RstTimeOut As Long) As Long

Parameters

C/C++: ‘ExcTimeOut’ is the new time-out value (in miliseconds) for the executio
commands sent to HyperChem, ‘QryTimeOut’ is the new time-out value
miliseconds) for the processing requests for HSV variables ,’RstTimeOu
the new time-out value for processing controling commands, like notifica
requests etc.

FORTRAN: ‘t-exc’ is the new time-out value (in milliseconds) for the execution
commands sent to HyperChem, ‘t_qry’ is the new time-out value
milliseconds) for processing requests for HSV variables ,’t_other’ is the n
time-out value for process controlling commands, like notification reque
etc.

VB: N/A

Return Value

The function does not return any data.

Remarks

The default value for all time-outs is about 65 seconds (0xFFF0.) After
time expires and any command, query or other operation has not finished
error condition is invoked. The user may increase the time-out value for
Classification of HAPI Calls 289

The API functions

res is
and

error

ted
ith

 are

 the
of these three types. The most common situation where the time expi
associated with execution of commands controlled by ‘’ExcTimeOut’
t_exc’.

See Also

hcLastError
This function retrieves code and messages associated with the last
associated with an HAPI operation.

API header

int hcLastError(char* LastErr);

FORTRAN interface

integer function hfLastError(error)

character*(*) error

VISUAL BASIC declaration

Declare Function hbLastError Lib "hapi.dll" Alias "hcLastError" (ByVal

last_error As String) As Long

Parameters

C/C++: The ‘LastErr’ pointer to string that will receive the text message associa
with the last error. The string should be of ‘hcMaxMessSize’, w
‘hcMaxMessSize’ defined in ‘hc.h’

FORTRAN: ‘error’ is the Fortran string that receives the last error message.

VB: N/A

Return Value

The function returns a value indicating how severe the error was. There
three possibilities:
errNO_ERROR - last operation was completed successfully

errNON_FATAL - last operation has not completed successfully, but
290 Appendix C

The API functions

not

 in

tion
es
program can continue.

errFATAL - last operation caused a severe error and the application can
continue.

The flags errNO_ERROR, errNON_FATAL and errFATAL are defined
‘hc.h’.

Remarks

The hcLastError function is most useful when the user setsthe error ac
flag to errACTION_NO using hcSetErrorAction. In this case the error do
not invoke messages on the screen asking for user intervention.

See Also

hcSetErrorAction, hcGetErrorAction

hcGetErrorAction
This function retrives the flag informing you how HAPI processes errors.

API header

int hcGetErrorAction(void);

FORTRAN interface

integer function hfGetErrorAction()

VISUAL BASIC declaration

Declare Function hbGetErrorAction Lib "hapi.dll" Alias "hcGetErrorAction" ()

As Long

Parameters

C/C++: The function takes no parameters.

FORTRAN:

VB:
Classification of HAPI Calls 291

The API functions

ined

m

sing
 in
Return Value

The function returns the flag that may be a sum of the following flags def
in ‘hc.h’:
errACTION_NO - do not perform any action on any error

errACTION_MESS_BOX - display message box with error message

errACTION_DISCONNECT - disconnect the application from HyperChe

errACTION_EXIT- immediately exit from application

errDDE_REP - report low level DDE error messages

errDDE_NO_REP - do not report low level DDE error messages

Remarks

The function should be called before the user changes the error proces
method by a call to hcSetErrorAction, and its value stored for later use
restoring the original error processing method.

See Also

hcLastError, hcSetErrorAction

hcSetErrorAction
This function changes the way errors are processed.

API header

void hcSetErrorAction(int err);

FORTRAN interface

subroutine hfSetErrorAction(action)

integer action

VISUAL BASIC declaration

Declare Function hbSetErrorAction Lib "hapi.dll" Alias "hcSetErrorAction"

(ByVal action As Integer) As Long
292 Appendix C

The API functions

 of

m

mes.

error
it is
on
|
n

Parameters

C/C++: ‘err’ - the value indicating how errors are to be processed. Must be a sum
the following flags defined in ‘hc.h’:
errACTION_NO - do not perform any action on any error
errACTION_MESS_BOX - display message box with error message
errACTION_DISCONNECT - disconnect the application from HyperChe
errACTION_EXIT - immediately exit from application
errDDE_REP - report low level DDE error messages
errDDE_NO_REP - do not report low level DDE error messages

FORTRAN: ‘action’ -indicates how errors are processed. See above for symbolic na

VB: N/A

Return Value

The function does not return any data.

Remarks

There are situations when the user does want to change the default
processing. By combining the value of flags in the appropriate sum
possible to get different actions on errors, ranging from no acti
(errACTION_NO) to full information (errACTION_MESS_BOX
errDDE_REP) and, possibly, exiting from current applicatio
(errACTION_EXIT).

See Also

hcGetErrorAction, hcLastError
Classification of HAPI Calls 293

The API functions
294 Appendix C

Index
A
ab initio calculations 193, 226
align 213
Amber 100
amino acid 220
animate 227
application

DDE 106
Architecture 8
argument 30, 31, 51, 96
array HSV 33
atom coordinates 163, 185, 190, 197, 218
atom numbering 30, 59, 98, 193

B
back end 8, 11, 16, 135, 185, 189, 204, 219

remote 18, 219
BAS file 152
basis set 195, 226
binary communication 137, 139
binary message 139
block 144
bond 57, 215, 216, 217, 218
bond-breaking 56
books 158, 172, 193

Tcl 94
books on Tcl 23

Boolean arguments 30, 51
Borland 3, 147, 148
button 96, 102, 195
button code 104
bypassing a dialog box 51

C
C 93, 135, 136, 158
C++ 93, 136, 147, 157
C60 58, 112
callback 129, 154, 155, 163
cancel 205, 210
Cancel button 46
Cancel menu 46
cancel-notify 30
caption 210
CDK 1

Components 2
center-of-mass 55
change-user-menuitem 37
charge 217, 218, 220
CHEM.SCR 53
chemical reactions 56
ChemPlus 16, 54, 115
chirality 190
Classification of Hcl Commands 203
client 106, 210
client-server 8, 16
295

2

clipboard 216
clipping 206
cold link 120
collision

reactive 55
color 215
command substitution in Tcl 95
communicating 135
communication 106, 219
communication channel 120
compiled scripts 54
configuration interaction 227
configure 102
console applications 10, 153
console programs 158
Console window 189
constraint 217
constraints 216
contour 228
control structures 55, 64
controls

VB 118
convergence 224, 226
coordinates of an atom 102
coordination 218
create-atom 59, 216
cursor 216
cursors 205
custom menus 6, 9, 21, 24, 37, 38
customizing HyperChem 1, 4, 8, 205
custom-title 47
cutoff 220, 226

D
DDE 7, 9, 12, 34, 105, 117, 125, 135, 152

Network 17
DDE communication 154
DDE conversations 106, 113
DDE server 106
DDE_ ADVISE 107
DDE_ EXECUTE 107
DDE_ REQUEST 107
DDE_EXECUTE 109, 115

DDE_INITIATE 107
DDE_REQUEST 115
declarations 212
default menus 44
development 157, 171
dialog box 51, 194
diffusion limited aggregation 202
dipole 228
dipole moment 100, 208, 209
dipole-moment 28, 49, 214, 218
direct command 49, 66, 138
direct commands 203
DLL 117, 127, 137, 147, 149, 174
dot surface 214
Dynamic Data Exchange 105, 125
Dynamic Link Library 8, 117, 147, 174

E
eigenvector 225
electronic spectra 227
electrostatics 220
embeddable 93
enable menu 46
energy 220, 223, 225, 226, 227, 228
ENT file 50
entry 98, 195
entry widget 98
enum 28, 30, 52
environment 147, 158, 186
errors 129, 130, 135, 146, 203, 211
event-driven applications 153
Excel macros 114
Exit 196
explicit hydrogens 58
expr 95
external Tcl/Tk 9, 130, 137

F
factory 211
factory settings 205
file 208, 216
file extension 52
file operations 208
finite state machine 33
96

8,
float 52
form 118
Fortran 3, 10, 93, 117, 135, 148, 172, 185, 189
frame 96, 101
frequency 227
front end 8, 11, 17, 193

G
gradient 224, 226
graph 57, 59, 228, 229
grid 229
GUI 17, 93, 117, 136, 185, 189, 194

H
HAPI 9, 10, 105, 117, 126, 147, 152, 193, 201
HAPI calls 105, 135, 136
HAPI library 138
hard-wired menus 38
hcAlloc 145, 286
hcConnect 128, 138, 188, 238
hcCopy 128
hcDisconnect 128, 138, 188, 240
hcExec 24, 46, 97, 128, 195, 196
hcExecBin 139, 244
hcExecTxt 138, 188, 241
hcExit 138, 241
hcFree 146, 287
hcGetBlock 144, 263
hcGetErrorAction 130, 146, 291
hcGetInt 140, 247
hcGetIntArr 140, 250
hcGetIntArrElm 140, 251
hcGetIntVec 140, 249
hcGetIntVecElm 140, 254
hcGetNotifyData 129, 145, 284
hcGetReal 141, 248
hcGetRealArr 141, 253
hcGetRealArrElm 141, 256
hcGetRealArrXYZ 141, 257
hcGetRealVec 141, 252
hcGetRealVecElm 141, 255
hcGetRealVecXYZ 141, 258
hcGetStr 142, 259
hcGetStrArrElm 142, 261

hcGetStrVecElm 142, 260
hcInitAPI 138, 237
Hcl 6, 22, 97, 203
Hcl command 49
Hcl script 2, 9, 29, 38, 64, 97, 194
Hcl script command 128
Hcl text string 139
hcLastError 129, 146, 290
hcNotifyDataAvail 145, 283
hcNotifySetup 145, 282
hcNotifyStart 129, 145, 280
hcNotifyStop 129, 145, 281
hcQuery 45, 97, 128
hcQueryBin 139, 146, 245
hcQueryTxt 138, 146, 188, 242
hcSetArrElm 144
hcSetBlock 145, 279
hcSetErrorAction 129, 146, 292
hcSetInt 142, 264
hcSetIntArr 142, 267
hcSetIntArrElm 143, 268
hcSetIntVec 142, 266
hcSetIntVecElm 143, 271
hcSetReal 143, 265
hcSetRealArr 143, 270
hcSetRealArrElm 143, 273
hcSetRealArrXYZ 144, 274
hcSetRealVec 143, 201, 269
hcSetRealVecElm 143, 272
hcSetRealVecXYZ 143, 275
hcSetStr 144, 276
hcSetStrArrElm 278
hcSetStrVecElm 144, 277
hcSetTimeouts 129, 146, 289
hcShowMessage 146, 288
header files 136, 147
heat-of-formation 219
hfExecTxt 193
hfGetRealArr 199
hfSetRealArr 193
hide-toolbar 47
hot link 107, 121
HSV 3, 8, 25, 27, 66, 99, 106, 120, 128, 13
297

2

196, 203
arguments 30

array 33

environment 58

read 29, 49, 138

scalar 31

vector 32

write 29, 49, 138
hsv.h

generating 140
huckel 225
hydrogen 219
hydrogen bonds 215
hydrogens 215, 216
HyperChem API 2, 135, 146, 147, 152
HyperChem Application Programming Inter-

face 2, 105, 117, 135
HyperChem Command Language 6, 22, 49, 93,

121, 125, 136
HyperChem OS 136
HyperChem state variables 3, 27
HyperEHT 12
HyperGauss 12, 193
HyperMM+ 12
HyperNDO 12, 189
HyperNewton 12, 189
HyperNMR 16

I
images 216
IMSG 15, 34
include file 137
inertial axes 214, 219
info 211
infra red 227
inhibit redisplay 213
initialization script 53
integer 30
integer, arguments 52
Integrated Development Environment 187
INTERFACE 150
interface to HyperChem 1, 6, 135

interpreter 93, 125
isosurface 215, 229
ITEM 44
item

DDE 106

K
keyboard accelerator 39

L
label 101, 195
labels 96, 215, 217
legacy applications 153
legacy code 117
legacy programs 10
library 135, 147, 149, 188
LineDown 112
LineUp 112
LinkExecute 121
LinkItem 120, 121
LinkMode 120, 121
LinkRequest 120
LinkTopic 120
load command 127
LoadHAPI 137, 149, 179
loading 122
load-time 147, 149
load-user-menu 38
log files 212
logging 212

M
MacroButton 110
macros 108, 111, 115
MAIN subroutine 111
makefile 148, 149
master 13
master - slave Architecture 13
memory allocation 145, 154
MENU 44
menu 205, 210

adding 37

enable 46
menu activation 49, 50, 67
98

menu caption 210
menu file 24, 38
Menu Files 2
menu invocation 138
menu item 39, 50
menu structure 21
MENUITEM 44
menuitem 210
message 24, 49, 120, 211

status 212
message box 146
message passing 106
messages 7, 14, 33, 106, 153, 155, 205
messaging 105
metafile 216
methane 57
MFC 10, 157, 171
Microsoft Developer Studio 149
Microsoft Excel 2, 17, 105, 113
Microsoft Foundation Classes 10, 157, 171
Microsoft Windows 105
Microsoft Windows API 146
Microsoft Word 2, 105, 107
mnu file 37
model builder 58, 216
molecular dynamics 55, 222
molecular graph 59
molecular mechanics 100, 219
monitor HyperChem 130
Monte Carlo 222
mouse 206
mp2 226
multiplicity 218

N
neighbors 217
network 17
new version of Tcl/Tk 126
NMAKE 159
notification 129, 130, 145, 159
notification agent 154
notifications 29, 126, 153, 210
notify-on-update 30

nucleic acid 221
numbering of atoms 30

O
OCR file 54
OLE 106, 135
OMSG 15, 29, 34, 209, 210
open architecture 13
open-shell 56
operating system 21
optimization 223
orbital 224, 225, 227
orbitals 193, 196, 200, 202
oscillator strength 228
Ousterhout, John 93

P
pack 24, 97, 99, 104, 195
package 127
parameter set 220
pdb 208
periodic 205, 215
perspective 214
Petzold, Charles 158
playback 223
POINT 55
pop 209, 210
Power Station 3, 150
print 205, 212
print-variable-list 67, 213
procedures in Tcl 96
programming 93, 98, 147, 153, 157, 171
Protein Data Bank 50
protocol 13, 106, 135
push 209, 210

Q
QCPE 189
quantum mechanics 224
query-response-has-tag 29, 45, 99
query-value 29, 50, 97, 209

R
read 153
read/write 28, 66
299

3

reading HSV 29
read-script 44, 209
read-tcl-script 25, 44, 125, 209
real number 52
recursive scripts 54
registering of HSV 27
relief ridge on label 101
render 214, 229
request to HyperChem 35
residue 221
restraint 224
RHF 56, 201
ribbons 215
rotate 213
rotate example 43
rotation 206
runtime 147, 149

S
scalar HSV 31
scr file 22, 50
script 33

arguments 30

initialization 53

instantiation 54

recursive 54
script argument 30
script command 203
script commands 4, 7, 22, 49, 67
script editor 54
script file 22, 52
script menu 37
SDK 10, 157, 171
select then operate 59
selecting 66
selection 55, 203, 206, 215
selection scripts 206
semi-empirical methods 225
server 16, 35, 106
set 95
single point calculations 204
slave 13
solvation 205

source command 131
spectra 227
spreadsheet 105, 113
static linkage 148
stereo 214, 215
stereochemistry 217
string 30, 51, 95, 144

T
Tcl 23, 55, 93

procedures 96
Tcl books 94
Tcl commands 95
Tcl file 24, 125, 131
Tcl resources 94
Tcl script 97, 100, 130, 194
Tcl/Tk 6, 93, 125
Tcl/Tk interpreter 125, 147
Tcl/Tk script 2, 6, 9, 22, 45, 155
TclOnly 24, 45, 96
temperature 222
template 113
template file 108
text communication 138
text object in VB 120
THAPI 126, 127, 128
timeout 129, 146
title 205

of window 47
Tk 6, 23, 55, 127
Tk dialog box 47, 199
TK window 132
tool command language 6
toolbar 47, 205
Toolkit 9, 93
topic

DDE 106
total-energy 204
translate 213
translation 206
type 1 9, 22, 49
type 2 9, 22, 93
00

U
UHF 56, 224
ultra violet 227
UMSG 15, 33
UNIX 1, 17, 18, 105, 127, 153, 186
unloading 122
update 45, 47

V
variable 99
variables in Tcl 95
vector HSV 32, 99
vector variable 113
velocities 56, 208, 218
vertical ordering 97
vibrational analysis 205, 215
Visual Basic 2, 9, 105, 117, 137, 147, 148, 152,

202
Visual Basic controls 118
Visual C++ 3, 147, 157, 171
VMSG 15, 34

W
warning 212
widget 46, 96, 100, 118, 127
window title 47
window_color 139
window-color 22, 27, 114, 120, 139, 177, 215
Windows API 10, 157
WinMain 154, 163
WINSOCK 18, 147
wish 126, 148
Wizard 172, 174, 176
WndProc 163
Word Basic 111
Word Macros 108
word processor 105
World Wide Web 23, 94, 115
write 153
writing HSV 29

X
XLM files 115

Z
zindo 225
zoom 206, 214
301

3
02

	HyperChem® for Windows and NT
	The Chemist’s Developer Kit (CDK):
	Customizing HyperChem
	Interfacing to HyperChem

	Copyright © 1996 Hypercube, Inc.
	All rights reserved

	Chapter 1� Introduction 1
	Chapter 2� Architecture of HyperChem 11
	Chapter 3� Customizing HyperChem 21
	Chapter 4� HyperChem State Variables 27
	Chapter 5� Custom Menus 37
	Chapter 6� Type 1 (Hcl) Scripts 49
	Chapter 7� Type 2 (Tcl/Tk) Scripts 93
	Chapter 8� DDE Interface to HyperChem 105
	Chapter 9� DDE and Visual Basic 117
	Chapter 10� External Tcl/Tk Interface 125
	Chapter 11� The HAPI Interface to HyperChem 135
	Chapter 12� Development Using the Windows API 157
	Chapter 13� Development Using the MFC 171
	Chapter 14� Console C and Fortran Applications 185...
	Chapter 1
	Introduction
	The Chemist’s Developer Kit
	CDK for Windows or NT
	Equivalent Unix CDK

	Components of the CDK
	Components Included with Release 5
	Other Suggested Tools
	Suggested Compilers

	HyperChem State Variables
	Customizing HyperChem
	Internal Script commands
	HyperChem Command Language (Hcl)
	Tool Command Language (Tcl/Tk)

	Custom Menus

	Interfacing to HyperChem
	Dynamic Data Exchange
	External Script Messages
	The HyperChem Application Programming Interface (H...

	Overview of Chapters

	Chapter 2
	Architecture of HyperChem
	Introduction
	The Front End - Back End Architecture
	The Older Master - Slave Architecture
	The Open Architecture
	UMSG and VMSG
	IMSG and OMSG

	The Newer Client - Server Architecture
	The Network Architecture
	Network DDE
	UNIX
	Remote Back Ends
	Mixing UNIX and Windows or NT

	Chapter 3
	Customizing HyperChem
	Introduction
	A Flexible Development Platform
	What are Scripts?
	Type 1 (Hcl) Scripts
	Type 2 (Tcl/Tk) Scripts
	Custom Menus

	Chapter 4
	HyperChem State Variables
	Introduction
	Registering of HSV’s
	An Example of an HSV
	Read/Write Nature of HSV’s
	Using HSV’s
	Writing
	Reading
	Notifications
	Atom Numbering for HSV’s
	Argument Types for HSV’s
	Boolean
	string
	filename
	enum
	int
	float

	Kinds of HSV’s
	Scalar HSV’s
	Vector HSV’s
	Array HSV’s

	A Finite State Machine View of HyperChem
	An HSV Server View of HyperChem

	Chapter 5
	Custom Menus
	Introduction
	Script Menu Items
	Menu Files
	Simple Example
	Further Customization

	Chapter 6
	Type 1 (Hcl) Scripts
	Introduction
	Hcl Script Commands
	HSV’s
	Menu Activations
	Direct Commands
	Arguments
	Boolean
	string
	filename
	enum
	int
	float

	Script Files
	CHEM.SCR
	Compiled Scripts
	Recursive Scripts
	Script Editor

	Examples
	Reactive Collision of Two Molecules
	Assign Target Position
	Assign Collision Velocities
	Wave Function Computation Parameters
	The Collision
	Building and Optimizing C60
	Setup
	Drawing the First Pair of Atoms
	Finish First Level Pentagon
	Build Remaining Layers
	Color Bottom and Rotate
	Zoom Structure
	Create an SO2 Molecule Inside C60
	Optimize SO2 inside Cavity

	Catalog of HSV’s and Direct Script Commands

	Chapter 7
	Type 2 (Tcl/Tk) Scripts
	Introduction
	Elements of Tcl
	Books
	Internet
	What is Tcl?
	Commands and Arguments
	Variables and Values
	Command Substitution
	Procedures and Control Structures
	Tk

	Hcl Embedding
	hcExec
	hcQuery

	Examples
	Calculating the Number of Atoms
	Calculating a Dipole Moment
	Labels
	Button

	Chapter 8
	DDE Interface to HyperChem
	Introduction
	DDE versus HAPI
	Use of DDE in Windows Applications

	Basic Properties of DDE
	DDE Message Types
	DDE_INITIATE
	DDE_ EXECUTE
	DDE_ REQUEST
	DDE_ ADVISE

	DDE Interface to Microsoft Word
	Red and Green Example
	1. Bring up a copy of Microsoft Word and type a fe...
	2. Select the <Tools/Macro...> menu item and creat...
	3. Add the following Word Basic code to create the...
	4. Select the menu item <Insert/Field...> to bring...
	5. Select the “Field Name” corresponding to MacroB...
	6. Repeat the whole process for a “Green button”.

	Extended Example
	ActivateHC
	ConnectHC:
	ExecuteCmd
	GetData
	DisconnectHC

	DDE Interface to Microsoft Excel
	Red (and Green)
	Additional Macros

	Chapter 9
	DDE and Visual Basic
	Introduction
	VB for GUIs or Computation
	VB with DDE or HAPI Calls

	Red and Green
	Basic Form and Controls
	Start Up (Load)
	A Cold Link Request
	A Hot Link
	Execute
	Unload

	A HAPI Interface to VB

	Chapter 10
	External Tcl/Tk Interface
	Introduction
	Why External?
	1. You want to connect to HyperChem from another c...
	2. You want your Tcl program to react to changes i...
	3. A new version of Tcl/Tk becomes available and i...
	4. The internal implementation of Tcl/Tk does not ...

	Invoking External Tcl/Tk
	The THAPI package
	Commands
	hcConnect <instance>
	hcDisconnect
	hcExec hcl_script_command
	hcQuery hsv
	hcCopy source_file desination_file
	hcNotifyStart hsv
	hcNotifyStop hsv
	hcGetNotifyData notification_data
	hcSetTimeouts exec_timeout query_timeout rest_time...
	hcLastError error_text
	hcSetErrorAction action_flag
	hcGetErrorAction

	A Notification Example

	Chapter 11
	The HAPI Interface to HyperChem
	Introduction
	Towards a Chemical Operating System
	The Components
	The HAPI Calls
	Initialization and Termination
	BOOL hcInitAPI (void)
	BOOL hcConnect (LPSTR lszCmd)
	BOOL hcDisconnect (void)
	void hcExit(void)
	Discussion

	Text-based Basic Communication Calls
	BOOL hcExecTxt (LPSTR script_cmd)
	LPSTR hcQueryTxt (LPSTR var_name)
	Discussion

	Binary-based Basic Communication Calls
	BOOL hcExecBin (int cmd, LPV args, DWORD args_leng...
	LPV hcQueryBin(int hsv, int indx1, int indx2, int...
	Discussion
	Binary Format

	Binary-based Get Integer Calls
	int hcGetInt (int hsv)
	int hcGetIntVec(int hsv, int* buff, int max_lengt...
	int hcGetIntArr (int hsv, int* buff, int max_lengt...
	int hcGetIntVecElm (int hsv, int index)
	int hcGetIntArrElm (int hsv, int atom_index, int m...
	Discussion

	Binary-based Get Real Calls
	double hcGetReal (int hsv)
	int hcGetRealVec(int hsv, double* buff, int max_l...
	int hcGetRealArr (int hsv, double* buff, int max_l...
	double hcGetRealVecElm (int hsv, int index)
	double hcGetRealArrElm (int hsv, int atom_index, i...
	int hcGetRealVecXYZ (int hsv, index, double* x, do...
	int hcGetRealArrXYZ (int hsv, int atom_index, int ...
	Discussion

	Binary-based Get String Calls
	int hcGetStr (int hsv, char* buff, int max_length)...
	int hcGetStrVecElm (int hsv, int index, char* buff...
	int hcGetStrArrElm (int hsv, int atom_index, int m...
	Discussion

	Binary-based Set Integer Calls
	int hcSetInt (int hsv, int value)
	int hcSetIntVec(int hsv, int* buff, int length)
	int hcSetIntArr (int hsv, int* buff, int max_lengt...
	int hcSetIntVecElm (int hsv, int index, int value)...
	int hcSetIntArrElm (int hsv, int atom_index, int m...
	Discussion

	Binary-based Set Real Calls
	int hcSetReal (int hsv, double value)
	int hcSetRealVec(int hsv, double* buff, int lengt...
	int hcSetRealArr (int hsv, double* buff, int lengt...
	int hcSetRealVecElm (int hsv, int index, double va...
	int hcSetRealArrElm (int hsv, int atom_index, int ...
	int hcSetRealVecXYZ (int hsv, index, double x, dou...
	int hcSetRealArrXYZ (int hsv, int atom_index, int ...
	Discussion

	Binary-based Set String Calls
	int hcSetStr (int hsv, char* string)
	int hcSetStrVecElm (int hsv, int index, char* stri...
	int hcSetArrElm (int hsv, int atom_index, int mol_...
	Discussion

	Get and Set Blocks
	int hcGetBlock (int hsv, char* buff, int max_lengt...
	int hcSetBlock (unt hsv, char* buff, int length)
	Discussion

	Notification Calls
	int hcNotifyStart (LPSTR hsv)
	int hcNotifyStop (LPSTR hsv)
	int hcNotifySetup (PFNB pCallBack, int NotifyWithT...
	int hcNotifyDataAvail (void)
	int hcGetNotifyData (char* hsv, char* buff, int ma...
	Discussion

	Memory Allocation
	void * hcAlloc (size_t, n_bytes)
	hcFree (void* pointer)
	Discussion

	Auxiliary Calls
	void hcShowMessage (LPSTR message)
	void hcSetTimeouts (int ExecTimeout, int QueryTime...
	int hcLastError (char* LastErr)
	int hcGetErrorAction (void)
	void hcSetErrorAction (int err)
	Discussion

	The HAPI Dynamic Link Library (HAPI.DLL)
	How to use the HyperChem API
	Accessing the HyperChem API from C/C++ code
	Run-Time Dynamic Linking
	Load-Time Dynamic Linking

	Accessing the HyperChem API from Fortran code
	Accessing the HyperChem API from Visual Basic Code...
	Accessing the HyperChem API from Tcl/Tk code
	Considerations for Console-based Applications
	The Notification Agent

	Examples of HAPI Calls
	C, C++
	Text-based
	Binary-based

	Fortran
	Text-based
	Binary-based

	Visual Basic
	Text-based
	Binary-based

	Chapter 12
	Development Using the Windows API
	Introduction
	Microsoft Development Tools
	Programming Assistance
	Language

	A First Example
	1. Change to the COLORS directory
	2. Type MSC.BAT
	3. Type NMAKE
	4. Make sure HyperChem is running
	5. Type COLORS to execute COLORS.EXE

	Modification of a Molecule’s Coordinates

	Chapter 13
	Development Using the MFC
	Introduction
	Microsoft Development Tools
	Programming Assistance
	Language

	A First Example
	1. Select <File/New...>
	2. Type in a name for your application and hit <Cr...
	3. Choose <Dialog based> and hit <Next>.
	4. Choose <About box> and <3D-controls> before hit...
	5. Choose <As a Shared DLL> and <Yes, Please> prio...
	6. Choose <Finish> and <OK> to complete the AppWiz...
	Modifications
	1. Click on the <ResourceView> tab at the bottom o...
	2. Double click on <IDD_CPPCOLOR_DIALOG> to place ...
	3. Click on <OK> to select the button and then <Fi...
	4. Repeat for the Cancel button.
	5. Repeat for the TODO label.
	6. Create a Button on the dialog box.
	7. Copy and Paste the Button to create a second on...
	8. Double click on the first button to change its ...
	9. Repeat for the second Green button.
	10. Select the menu item <View/Class Wizard...>
	11. Select <IDC_RED> and <IDC_GREEN> in turn with ...
	12. Hit <Edit Code> and type in the correct code f...
	13. Repeat steps 11 and 12 for the green button.

	Included Files
	Dynamic Link Library and Connecting to HyperChem

	Cavity

	Chapter 14
	Console C and Fortran Applications
	Introduction
	Console Applications
	C or Fortran
	The Integrated Development Environment

	C Program
	Fortran Programs
	Reflect
	MiniGauss Orbitals
	Outline
	A New GUI Element
	The Main Program
	Get Molecule
	Wave function Calculation
	Displaying Orbitals and ...

	Diffusion Limited Aggregation

	Further Examples

	Appendix A
	Classification of Hcl Commands
	The Classes
	General Operations
	Single Point
	Solvation
	Customization
	Printing
	Other

	Cursors
	Mouse Mode
	Clipping
	Rotation
	Translation
	Zoom

	Selections
	Select Options
	Select
	Ask About Selection
	Operate on Selection
	Named Selections
	Other

	File Operations
	Molecule File
	Options
	PDB File
	Import/Export
	Other

	Scripts
	Script Files
	Execution
	Notifications
	OMSGs
	Menus
	Stack Operation
	Other

	Info
	Errors
	Logging
	Auxiliary
	Declarations
	Warnings
	Screen Output
	Version
	Other

	Viewing
	Alignment
	Redisplay
	Rotation
	Translation
	Window
	Other

	Rendering
	General Options
	Specific Rendering Options
	Show - Don’t Show

	Coloring and Labeling
	Color
	Labels

	Images
	Model Building
	Options
	Drawing
	Constraints
	Other

	Stereochemistry
	Atom Properties
	Labels
	Coordinates and Velocities
	Other

	Molecule Properties
	Charge-Multiplicity
	Counts
	Properties

	Back Ends
	Basic
	Large Communication Structures
	Remote Back Ends

	Molecular Mechanics Calculations
	Method
	Energy Components
	Cutoffs
	Scale Factors
	Parameters

	Amino Acids and Nucleic Acids
	Amino Acids
	Nucleic Acids
	General Residue

	Molecular Dynamics and Monte Carlo
	Basic
	Run Parameters
	Averaging
	Playback
	Monte Carlo Specific

	Optimization
	Basic
	Restraints

	General Quantum Mechanics
	Input Parameters
	Output Results

	Semi-empirical Calculations
	General
	Huckel
	ZINDO

	Ab Initio Calculations
	Input Options
	Basis Set
	2-electron Integrals
	Results

	Configuration Interaction
	Infrared Spectra
	Animations
	Spectra

	UV Spectra
	Plotting
	General Options
	2D
	3D
	Grid

	Appendix B
	Listing of Tcl Commands
	The Tcl Commands

	Appendix C
	Classification of HAPI Calls
	The API functions
	Functions for Initialization and Termination
	Functions for Text-based Communication
	Functions for Binary Communication
	Binary Execute and Query
	Functions for Binary ‘Get’
	Functions for Binary ‘Set’

	Functions for Processing Notifications
	Functions For Memory Allocation
	Auxiliary Functions

	Index

