HyperChem® for Windows and NT

The Chemist’s Developer Kit (CDK):
Customizing HyperChem

Interfacing to HyperChem

Hypercube, Inc.
Publication HC50-00-04-00 October 1996

Copyright © 1996 Hypercube, Inc.

All rights reserved

The contents of this manual and the associated software are the property of Hypercube, Inc. and are copyrighted. This publication,
or parts thereof, may not be reproduced in any form, by any method, for any purpose.

HYPERCUBE, INC. PROVIDES MATERIALS “AS 1IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OR CONDITIONS
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL HYPERCUBE,
INC. BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS, EVEN IF
HYPERCUBE, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY
DEFECT OR ERROR IN THESE MATERIALS. THE SOLE AND EXCLUSIVE LIABILITY TO HYPERCUBE, INC.,
REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THE MATERIALS
DESCRIBED HEREIN.

Hypercube, Inc. reserves the right to revise and improve its products as it sees fit.

Hypercube Trademarks

HyperChem is a registered trademark of Hypercube, Inc. HyperMM+, HyperNewton, HyperEHT, HyperNDO, HyperGauss,
HyperChemOS, HyperNMR and ChemPlus are trademarks of Hypercube, Inc.

Third Party Trademarks

Microsoft, MS-DOS, and Excel are registered trademarks, and Windows is a trademark of Microsoft Corporation.
IBM is a registered trademark of International Business Machines, Inc.

All other brand and product names are trademarks or registered trademarks of their respective holders.

PRINTED IN CANADA

Table of Contents

Chapter 1 Introduction

The Chemist’'s Developer Kit.
CDK for Windows or NT.
Equivalent Unix CDK .
Components of the CDK . .
Components Included with Release 5 .
Other Suggested Tools.
Suggested Compilers .
HyperChem State Variables
Customizing HyperChem . .
Internal Script commands.
HyperChem Command Language (HcI)
Tool Command Language (Tcl/Tk)
Custom Menus .
Interfacing to HyperChem. .
Dynamic Data Exchange .
External Script Messages .

The HyperChem Application Programmlng Interface (HAPI)

Overview of Chapters .

Chapter 2 Architecture of HyperChem

Introduction .
The Front End - Back End Archltecture
The Older Master - Slave Architecture .
The Open Architecture .

UMSG and VMSG .

IMSG and OMSG .
The Newer Client - Server Architecture
The Network Architecture .

Network DDE

11

.11

.11

.13
.13

.15

.15
.16
.17

.17

UNIX .
Remote Back Ends

Mixing UNIX and Windows or NT

Chapter 3 Customizing HyperChem

Introduction . .
A Flexible Development Platform
What are Scripts? .

Type 1 (Hcl) Scripts

Type 2 (Tcl/Tk) Scripts

Custom Menus .

Chapter 4 HyperChem State Variables

Introduction .
Registering of HSV S.
An Example of an HSV .
Read/Write Nature of HSV's
Using HSV’s
Writing .
Reading.
Notifications
Atom Numbering for HSV S

Argument Types for HSV’s
Kinds of HSV's.

Scalar HSV'’s

Vector HSV'’s .

Array HSV'’s
A Finite State Machine View of HyperChem
An HSV Server View of HyperChem .

Chapter 5 Custom Menus

Introduction .

Script Menu ltems .
Menu Files .

Simple Example
Further Customization

17
. 18
18

21

21
21
22
22
22
24

27

.27
27
27
28

. 28

29

. 29
29

30
30
31
31
32
33
33
35
35

37

37
37
38
43
47

Chapter 6 Type 1 (Hcl) Scripts

Introduction .
Hcl Script Commands
HSV’s .
Menu Activations .
Direct Commands .
Script Files
CHEM.SCR .
Compiled Scripts
Recursive Scripts
Script Editor .
Examples .
Reactive Collrsron of Two Molecules .
Assign Target Position
Assign Collision Velocities .
Wave Function Computation Parameters.
The Collision
Building and Optrmrzrng CGO
Setup . . .
Drawing the First Parr of Atoms
Finish First Level Pentagon .
Build Remaining Layers .
Color Bottom and Rotate.
Zoom Structure. .
Create an SO2 Molecule Insrde C60
Optimize SO2 inside Cavity .
Catalog of HSV’s and Direct Script Commands .

Chapter 7 Type 2 (Tcl/Tk) Scripts

Introduction
Elements of Tcl .
Books .
Internet
What is Tcl? . . .
Commands and Arguments .
Variables and Values .
Command Substitution
Procedures and Control Structures
Tk .
Hcl Embedding
hcExec.

49

. 49
. .49
. 49
.50
.50
. 52
. 53
. 54
. 54
. 54
. .54
. 55
. .55
. 56
. 56
. 57
. 58
. .58
. 59
.59
. 60
. 64
. 65
. 66
. 66
. 66

93

.93
.94
.94
.94
. 95
.95
.95
. 95
. 96
. 96
.97
.97

Table of Contents

hcQuery .
Examples. G
Calculating the Number of Atoms.
Calculating a Dipole Moment .

Labels

Button

Chapter 8 DDE Interface to HyperChem

Introduction . .o
DDE versus HAPI. .

Use of DDE in Windows Applications .

Basic Properties of DDE .
DDE Message Types .
DDE_INITIATE .
DDE_ EXECUTE
DDE_ REQUEST
DDE_ ADVISE
DDE Interface to Microsoft Word .
Red and Green Example.
Extended Example
ActivateHC
ConnectHC:
ExecuteCmd
GetData.
DisconnectHC.
DDE Interface to Microsoft Excel .
Red (and Green)
Additional Macros

Chapter 9 DDE and Visual Basic

Introduction . e e
VB for GUIs or Computation
VB with DDE or HAPI Calls
Red and Green . e
Basic Form and Controls
Start Up (Load)
A Cold Link Request.
A Hot Link .
Execute .
Unload

97

. 98
. 98
. 100
. 101
. 102

105

. . 105
. . 105
. 105
. 106
. . 106
. 107
. 107
. 107
. 107
. 107
. 108
P §
. 111
. 112
. 112
. 112
. 113
. 113
.. 114
. 115

117

.o 117
. 117
. 117
. . 118
. 118
. 119
. 120
121
. 121
121

Table of Contents

A HAPI InterfacetoVB 122

Chapter 10 External Tcl/Tk Interface 125
Introduction . 125
Why External? . 125
Invoking External Tel/Tk 126
The THAPI package . 127

Commands P 2
hcConnect <|nstance> e 2
hcDisconnect . . . A 22 <
hcExec hcl_script_ command 128
hcQuery hsv. 128
hcCopy source_file desmatlon f|Ie 128
hcNotifyStarthsv 129
hcNotifyStop hsv . . . P 24°
hcGetNotifyData notlflcatlon data Co .. 129
hcSetTimeouts exec_timeout query_timeout rest_timeout . . 129
hcLastErrorerror_text 129
hcSetErrorAction action_flag 129
hcGetErrorAction 130

A Notification Example 130

Chapter 11 The HAPI Interface to HyperChem 135
Introduction . . . e e 13
Towards a Chemical Operatlng System e e 136
The Components. 136
The HAPICalls < 4

Initialization and Termlnatlon e 138
BOOL hclnitAPI (void) 138
BOOL hcConnect (LPSTR IszCmd) 138
BOOL hcDisconnect (void) 138
void hcExit(void) 138
Discussion 138

Text-based Basic Communlcatlon CaIIs 138
BOOL hcExecTxt (LPSTR script. cmd) 138
LPSTR hcQueryTxt (LPSTR var_name). 138
Discussion 138

Binary-based Basic Communlcatlon Calls . . 139
BOOL hcExecBin (int cmd, LPV args, DWORD args_ Iength) 139
LPV hcQueryBin(int hsv, int indx1, int indx2, int* length) . . 139

Table of Contents v

Discussion .
Binary Format.

Binary-based Get Integer Calls.
int hcGetint (int hsv). .
int hcGetIntVec(int hsv, int* buff, int max Iength)
int hcGetIntArr (int hsv, int* buff, int max_length) .
int hcGetIntVecEIm (int hsv, int index) .

int hcGetIntArrEIlm (int hsv, int atom_index, int mol mdex) .

Discussion . .
Binary-based Get Real Calls
double hcGetReal (int hsv).
int hcGetRealVec(int hsv, double* buff int max Iength)
int hcGetRealArr (int hsv, double* buff, int max_length)
double hcGetRealVecEIm (int hsy, int index) .
double hcGetRealArrElm (int hsv, int atom_index,
int mol_index) .
int hcGetRealVecXYZ (int hsv, |ndex double*
double* y, double* z) .

int hcGetRealArrXYZ (int hsv, int atom_ mdex int moI mdex

double* x, double* y, double* z)
Discussion .
Binary-based Get String Calls .
int hcGetStr (int hsv, char* buff, |nt max Iength)
int hcGetStrVecEIm (int hsv, int index, char* buff,
int max_length) .

int hcGetStrArrEIm (int hsv, int atom_| mdex |nt moI mdex char*

buff, int max_length) .
Discussion .
Binary-based Set Integer Calls
int hcSetint (int hsv, int value) .
int hcSetIntVec(int hsv, int* buff, int Iength)
int hcSetIntArr (int hsv, int* buff, int max_length)
int hcSetIntVecElm (int hsy, int index, int value) .
int hcSetIntArrEIlm (int hsv, int atom_index,
int mol_index, int value) .
Discussion . .
Binary-based Set Real Calls
int hcSetReal (int hsv, double value) .
int hcSetRealVec(int hsv, double* buff, int Iength)
int hcSetRealArr (int hsv, double* buff, int length) .
int hcSetRealVecEIm (int hsv, int index, double value) .

. 139
. 139
. 140

. . 140
. 140
. 140
. . 140
. 140

. 141
. 141

.14
. 141
. 141

. 141

. 141

. 141

. 141

. 142
. 142

. 142

. 142

. 142

. 142
. 142

.. 142
. 142
. 142
. 143

. 143
. 143
. 143

. . 143
. 143
. 143
. 143

int hcSetRealArrEIm (int hsv, int atom_index, int mol_index, double

value) .

vi

Table of Contents

. 143

int hcSetRealVecXYZ (int hsv, index, double x,
double y, double z)

143

int hcSetRealArrXYZ (int hsv, int atom_ |ndex int moI |ndex double

X, double y, double z)
Discussion
Binary-based Set String Calls
int hcSetStr (int hsv, char* strlng) .
int hcSetStrVecElm (int hsy, int index, char* strlng)
int hcSetArrEIm (int hsv, int atom_index, int mol_index, char*
string) .
Discussion
Get and Set Blocks .
int hcGetBlock (int hsv char* buff int max Iength)
int hcSetBlock (unt hsv, char* buff, int length) .
Discussion
Notification Calls .
int hcNotifyStart (LPSTR hsv)
int hcNotifyStop (LPSTR hsv) .
int hcNotifySetup (PFNB pCallBack, int NotlfywlthText)
int hcNotifyDataAvail (void)
int hcGetNotifyData (char* hsv, char* buff int max Iength)
Discussion
Memory Allocation. .
void * hcAlloc (size_t, n bytes)
hcFree (void* pointer)
Discussion
Auxiliary Calls .
void thhowMessage (LPSTR message)

void hcSetTimeouts (int ExecTimeout, int QueryTimeout, int

OtherTimeout) .
int hcLastError (char* LastErr) .
int hcGetErrorAction (void) .
void hcSetErrorAction (int err) .
Discussion
The HAPI Dynamic Link Library (HAPI. DLL)
How to use the HyperChem API . .
Accessing the HyperChem API from C/C++ code .
Run-Time Dynamic Linking.
Load-Time Dynamic Linking .o
Accessing the HyperChem API from Fortran code .
Accessing the HyperChem API from Visual Basic Code .
Accessing the HyperChem API from Tcl/Tk code .
Considerations for Console-based Applications .

144
144
. 144
144
144

144
144
. 144
144
145
145
145
145
145

145

145
145
145
. 145
145
146
146
146
146

146
146
146
146
. 146
146
. 147
. 148
148
149
150
152
153
153

Table of Contents

vii

The Notification Agent .
Examples of HAPI Calls .

C, C++ .o
Text-based .
Binary-based .
Fortran Lo

Text-based .

Binary-based .
Visual Basic .

Text-based .

Binary-based .

Chapter 12 Development Using the Windows API

Introduction .
Microsoft Development TooIs
Programming Assistance
Language

A First Example

Modification of a Molecule’s Coordlnates

Chapter 13 Development Using the MFC

Introduction .
Microsoft Development Tools
Programming Assistance
Language

A First Example
Modifications .
Included Files .

Dynamic Link Library and Connectlng to HyperChem .

Cavity.

Chapter 14 Console C and Fortran Applications

Introduction . .

Console Appllcatlons

C or Fortran.

The Integrated Development Envwonment
C Program
Fortran Programs .

Reflect

. 154
. 155
. 155
. 155
. 155
. 155
. 155
. 156
. 156
. 156
. 156

157

. . 157
. 157
. 157
. 158
. . 158
. 163

171

.1
. 171

. 171

. 172

.. 172
. 174

. . 178
. 179

. 180

185

. . 185
. 185
. 186
. 187
. 187
.. 189
. 190

Viii Table of Contents

MiniGauss Orbitals .
Outline .o
A New GUI Element .
The Main Program.
Get Molecule .o
Wave function Calculation .
Displaying Orbitals and ...
Diffusion Limited Aggregation .
Further Examples

Appendix A Classification of Hcl Commands

The Classes L.
General Operations.
Single Point .
Solvation.
Customization .
Printing
Other .
Cursors
Mouse Mode
Clipping .
Rotation .
Translation .
Zoom .
Selections. Co
Select Options .
Select . .o
Ask About Selection .
Operate on Selection .
Named Selections .
Other .
File Operations .
Molecule File
Options
PDB File .
Import/Export .
Other .
Scripts.
Script Files .
Execution
Notifications
OMSGs .

203

193

193
194

196
197
200
200
202

202

203
204

204

205
205
205
205
205

206

206
206
206
206
206
207
207
207
207
207
207
208

208

208
208
208

209

209

209

Table of Contents

ix

209
210
210

Menus210
Stack Operaton210
Other210
Info L . L L ... L.21
Errors 21
Logging 212
Auxiliary oL L. L212
Declarations212
Warnings212
ScreenOutput.212
Version.212
Other213
Viewing. .213
Alignment213
Redisplay213
Rotation.213
Translaton.213
Window.213
Other214
Rendering .214
General Options214
Specific Rendering Options214
Show-DontShow215
Coloring and Labeling215
Color215
Labels215
Images .216
Model Building216
Options.216
Drawing216
Constraints.216
Othero.217
Stereochemistry21
Atom Properties217
Labels o.217
Coordinates and Velocities.218
Other218
Molecule Properties218
Charge-Multiplicity218
Counts218
Properties218
BackEnds .219
Basic219

Table of Contents

Large Communication Structures .
Remote Back Ends.
Molecular Mechanics Calculations .
Method .
Energy Components
Cutoffs
Scale Factors
Parameters .
Amino Acids and Nucleic Acids .
Amino Acids
Nucleic Acids
General Residue .
Molecular Dynamics and Monte Carlo.
Basic . .
Run Parameters.
Averaging
Playback . .o
Monte Carlo Specific .
Optimization.
Basic .
Restraints
General Quantum Mechanics.
Input Parameters
Output Results .
Semi-empirical Calculations .
General
Huckel
ZINDO
Ab Initio Calculations .
Input Options
Basis Set .
2-electron Integrals
Results
Configuration Interaction .
Infrared Spectra .
Animations .
Spectra
UV Spectra
Plotting P
General Options
2D.
3D.
Grid

Table of Contents

Xi

219
219
219
219
220

220
220

220

220

221
221
221
222
222
222
223
223
223
223
224
224
224
224
224
225
225
225
225
226
226
226
226
226
227
227
227
227
227
228
228
228
229
229

Appendix B Listing of Tcl Commands

The Tcl Commands

Appendix C Classification of HAPI Calls

The API functions . e e
Functions for Initialization and Termination
Functions for Text-based Communication
Functions for Binary Communication

Binary Execute and Query .

Functions for Binary ‘Get’ .

Functions for Binary ‘Set’ .
Functions for Processing Natifications
Functions For Memory Allocation
Auxiliary Functions .

Index

231
. 231

237

.. 237
. 237
. 241
. 244
. . 244
. 247
. 264
. 280
. 286
. 288

295

Xii

Table of Contents

Chapter 1

Introduction

The Chemist’'s Developer Kit

The Chemist's Developer Kit (CDK) allows you to:

e Customize HyperChem For Your Own Purposes

e Interface Your Own Programs to HyperChem

CDK for Windows or NT

This manual describes the Chemist’s Developer Kit (CDK) to be used in asso-
ciation with Release 5.0 or greater of HyperChem® for Windows and NT.
The CDK allows you t@ustomizedyperChem for your own special pur-
poses, by modifying its menus and introducing scripts that each custom menu
item can invoke. Alternatively, you can use the CDKterfaceHyperChem

to external programs written in Visual Basic, C, Fortran, etc. The CDK for
Windows and NT, as described here, allows you to extend HyperChem in a
multitude of ways but always within the confines of Microsoft Windows 95
(or greater) or Windows NT 3.51 (or greater).

Equivalent Unix CDK

A similar but somewhat modified CDK and manual will be made available
for Unix. That manual will describe how to, correspondingly, customize Unix
versions of HyperChem and how to interface a UNIX version of HyperChem
to programs written for Unix. It will also describes how to interface a Win-
dows or NT version of HyperChem to your Unix program.

Components of the CDK

Components of the CDK

The CDK is included as a part of the general Release 5.0 of HyperChem for
Windows 95 and NT. Example scripts and programs are found in sub-direc-
tories on the HyperChem CD-ROM associated with the the relevant program-
ming environment - C, Fortran, etc. The current CDK has only limited capa-

bility with older versions of HyperChem.

Components Included with Release 5

The CDK consists essentially consists of:

* A HyperChem Executable (Release 5.0 or greater)
* This Manual

* Example Custom Menu Files (MNU)

 Example Hcl Scripts¥. SCR)

* Example Tcl/Tk Scripts¥. TCL)

* The HyperChem Application Programming Interface Library (H,
HCLOAD.C, HSV.H, HAPI.DLL and HAPI.LIB for C/C++
environments)

* Related HAPI Files for Other Languages

» Example Programs Interfaced to HyperChem

Other Suggested Tools

To customize HyperChem no other tools are required. However, to explore
interfacing HyperChem to other Windows programs, one or more of the fol-
lowing may be useful:

* Microsoft Word
* Microsoft Excel

* Microsoft Visual Basic

These three have been used in this manual to illustrate the low-level DDE
interfaces to HyperChem described in Chapters 8 and 9. Other Windows
word processors (for example, WordPerfect) or spreadsheets (for example,
Quattro Pro) could be used in place of Word and Excel but the authors have
little experience with them. Visual Basic is preferred by the authors as a rapid

2 Chapter 1

HyperChem State Variables

prototyping language for preparing a visual interface to HyperChem. Again,
other such visual tools are available from Borland and other manufacturers.

Visual Basic may also be used with the higher-level HyperChem Application
Programming Interface (HAPI) replacing the lower-level DDE interface.

Suggested Compilers

To explore compiled C, C++, or Fortran programs interfaced to HyperChem,
appropriate compilers and development environments are required. We have
used

¢ Microsoft Visual C++ 4.0

* Microsoft Fortran PowerStation 4.0

Equivalent compiler tools from other manufacturers, such as Watcom, may
be used but the examples of the CDK have only been tested with the
Microsoft tools.

HyperChem State Variables

The CDK and much of what follows are possible because HyperChem imple-
ments the concept ofsdate variable A HyperChem State Variable (HSV) is

one of hundreds of variables and data structures that is registered at the instan-
tiation of HyperChem and is henceforth available for flexible and robust read-
ing and writing at any later time. An example of an HSV is the total energy

of the system which is represented by the hyphenated string,

total-energy

At any time, even when the system still has no molecule or no calculation has
yet been performed on the molecular system (and the total energy as the ini-

Introduction 3

Customizing HyperChem

tialized value zero), the HSWhtal-energy is available for reading and writ-
ing, either within a HyperChem script or from an external program.

PROGRAM FILE

total-energy

total-energy 1.035

DDE File
Message Reader
Reader

HyperChe

Hcl Interpreter

Customizing HyperChem

HyperChem has two quite unique features that allow you to customize it. The
first of these is that it has its own setsafipt commandthat can activate
essentially any of the program’s functionality. The second is that HyperChem
allows its whole menu structure to be replacedustom menus

4 Chapter 1

EHyperEhem - [untitled)
File Edit QAEEE

] byltemi
alele e

yltem3

Customizing HyperChem

=10l

Fle| Dl=iE] s |m|e] @2

—® Execute Script

| |[chDD

Internal Script commands

Script commands each consist of a single line of text, sudb-a®lecular-
dynamicsandmenu-file-openthat invoke HyperChem actions or read and
write HyperChem State Variables (HSV’s) via a Scripting Interface (Sl) that

is a superset of the

interactive Graphical User Interface (GUI) available via

mouse and keyboard.Thus a molecular dynamics trajectory can be initiated
by mouse clicks on the appropriate menu items and dialog boxes or by the
above script commands. Alternatively, one can bring up the
<File/Open...2dialog box by clicking on the appropriate menu item or by
executing the appropriate script commamenu-file-openScript commands

can be of two types

, Hel or Tcl/Tk.

1. Here and throughout the text we will periodically use angular brackets to delimit menu items
(and other text) so as not to confuse it with surrounding text.

Introduction 5

Interfacing to HyperChem

HyperChem Command Language (Hcl)

Scripts can be written in théyperChem Command Language (K gljo-

nounced “hickle”, that has been part of HyperChem since its first public
release. These scripts, now referred to in Release 5.0 as Hcl scripts consist of
a simple sequence of Hcl commands (strings), such amthelecular-
dynamicsscript command referred to above. Hcl scripts are storedsior

files that contain only straight line code consisting of a sequence of single line
Hcl commands. Hcl scripts contain no Variables or Control Statements such
as IF, ELSE, DO, etc.

Tool Command Language (Tcl/Tk)

With Release 5.0, HyperChem can now exectitel/d@k Scriptthat consist

of Hcl script commands embedded inside a conventional Tcl/Tk script. A
Tcl/Tk script is one that is interpreted by the well known public domain Tcl
command interpreter that is now part of HyperChem Release 5.0. The Tcl
interpreter allows a rich control structure of variables, loops, conditionals,
etc. It is augmented by a tool kit (Tk) that allows a Tcl script to define new
graphical elements, such as dialog boxes, allowing you to extend Hyper-
Chem’s GUI.

Custom Menus

HyperChem Release 5.0 allows a user to replace the standard menu structure
of the shipped product with a totally new and custom menu structure. Each
custom menu item can have its own button text and can be tied to the execu-
tion of an arbitrary script file, either. scr or x. TcL. Since all the conven-

tional menu items of HyperChem Release 5.0 have equivalent script com-
mands such amenu-file-openthe custom menus can replicate the standard
HyperChem product as well as define essentially any new product that one
likes. The custom menus allow a Tabula Rasa, or blank page, on which a new
chemistry product can be written.

Interfacing to HyperChem

A principal component of the CDK is the documentation, libraries, and exam-
ples that allow you to interface your own codes to HyperChem. Customizing
HyperChem, as implied above, meansittternal execution of script com-
mands brought about by reading them from a simple textfile R or

* . TCL). Interfacing to HyperChem on the other hand, implies thaixter-

6 Chapter 1

Interfacing to HyperChem

nal program (your own) executes the equivalent of script commands by send-
ing them asnessage® a running copy of HyperChem.

messages B Your
HyperChen

< —sssages|
messages| Program

That is, an external program can drive HyperChem from outside by sending
it script messages. Interfacing to HyperChem does not imply that you stati-
cally link your code together with HyperChem code but rather that you com-
pletely control HyperChem from outside and read and write to HyperChem'’s
data structures via external messages.

Dynamic Data Exchange

With most computer operating systems, running programs can send messages
to one another. In the Unix environment these messages are often imple-
mented with Pipes or Sockets and the Unix version of HyperChem can accept
messages sent by external programs in this fashion. Microsoft Windows and
NT include a capability, referred to as Dynamic Data Exchange (DDE), that

is an equivalent capability allowing one Windows or NT program to commu-
nicate with another by sending it DDE messages.

External Script Messages

In the Microsoft Windows or NT environment a program external to and
independent of HyperChem can drive or control HyperChem by sending it
DDE messages. HyperChem responds to a complete sifgifmessages
implemented via DDE, that are analogous and essentially identical to the
script commandsiscussed above. A script command is text placed in a file
while a script message is the corresponding text placed in a message. Thus a
HyperChem molecular dynamics trajectory can be initiated by running a
script with the textlo-molecular-dynamics a* . scr or * . tcl file or by
sending a DDE message containing the same text.

These external DDE messages can be sent to HyperChem from essentially
any well-designed Microsoft Windows or NT program. Thus, HyperChem
can be driven from a word processor like Microsoft Word, a spreadsheet like

Introduction 7

Overview of Chapters

Microsoft Excel, a simple Visual Basic program or a C, C++, or Fortran pro-
gram.

The HyperChem Application Programming Interface (HAPI)

The CDK includes a dynamic link library (HAPI.DLL) and a static library
(HAPI.LIB) that makes it particularly easy to interface your compiled Visual
Basic, C, C++ or Fortran program to HyperChem. Instead of using DDE, an
external program can just make HAPI calls to HyperChem. These HAPI calls
are part of a higher-level interface that is included with the CDK and which
abstracts away from operating system and machine dependencies to give you
a portable interface to HyperChem. Everything you can do with the lower-
level DDE interface you can accomplish with the HyperChem API.

Overview of Chapters

The CDK Manualcontains the following chapters:

* Chapter 1this“Introduction” discusses the general nature of the com-
ponents of the Chemist’s Developer Kit and gives an overview of the rest
of the chapters.

e Chapter 2 Architecture of HyperChemdiscusses the general architec-
ture of HyperChem including isront End - Back Endrchitecture, its
NetworkArchitecture, itsClient-ServerArchitecture, and it©pen
Architecture. Each of these architectural aspects is important for the
richer understanding of HyperChem that is desirable in order for you to
be able to easily customize it or interface your own code to it. Of partic-
ular importance for the CDK is an understanding of the Open Architec-
ture of HyperChem.

* Chapter 3“Customizing HyperChemmdescribes script commands and
the execution of script files, either HyperChem Hcl script files or Tcl/Tk
Script files. Hcl script files contain simple sequences of script com-
mands. Tcl/Tk Script files contain normal Tcl/Tk code with embedded
Hcl script commands. This chapter, in addition, gives a full description
of the custom menu capability.

» Chapter 4“HyperChem State Variablésjescribes the concept of
HyperChem State Variables (HSV's) in detail. The basic data structures
of HyperChem are HSV'’s. These are registered by HyperChem at instan-
tiation and are made available for reliable Reading and Writing by scripts
and by external programs. This chapter provides background for later

8 Chapter 1

Overview of Chapters

chapters which use HSV’s in scripts and in the HyperChem Application
Programming Interface (HAPI).

Chapter 5 Custom Menusdescribes the concept of custom menus and
the syntax of a menu file. A menu file describes a set of menus and the
scripts that are executed upon selecting a menu item. This chapter fully
defines the use of custom menus in HyperChem.

Chapter 6“Type 1 (Hcl Scripts),describes the HyperChem Command
Language (Hcl) and scripts based upon it. These scripts are straight-line
scripts that access HyperChem data and functionality but include no con-
trol structures. Even without the superstructure provided by the control
structures of other languages, however, Hcl scripts can accomplish sig-
nificant tasks on their own.

Chapter 7¢Type 2 (Tcl/Tk) Script’ describes a new feature of Hyper-
Chem, the inclusion of a very flexible and extensible scripting language
referred to as the Tool Command Language (Tcl). It includes an exten-
sion called the Toolkit (Tk) that can be used to build additional graphical
user interfaces for HyperChem. All Type 1 (Hcl) script commands are
fully imbedded in the new Tcl/Tk interpreter.

Chapter 8‘DDE Interface to HyperCherndescribes the low level DDE
interface to HyperChem that allows the direct control of HyperChem by
programs like Word or Excel. A first example of HyperChem interfacing

is given by having these external programs execute simple script mes-
sages to affect the visual appearance of the HyperChem screen. Subse-
guent, more complicated examples, are also described.

Chapter 9“DDE and Visual basit,describes how programs written in
Visual Basic can be interfaced to HyperChem via DDE. This extends the
discussion of the last chapter to a more fully programmable system like
Visual Basic. It contrasts with later Visual Basic applications that use the
HAPI library.

Chapter 10“The External Tcl/Tk Interfacegescribes an interface to
HyperChem where external forms of Tcl and Tk are used to interface to
HyperChem. Use of theTcl/Tk interpreter from outside HyperChem
allows for certain operations, such as notification, that are not possible
with the interpreter imbedded right into HyperChem.

Chapter 11, MAPI Interface to HyperChefingescribes a higher level
library for interfacing to HyperChem for use by Visual Basic, C, C++,
and Fortran programs. This HyperChem Application Programming
Interface (HAPI) is described along with the calls that it contains. The

Introduction 9

Overview of Chapters

HAPI library is a fundamental component of the CDK. It is illustrated
with a Visual Basic example.

* Chapter 12‘Development Using the Windows ARlgscribes the devel-
opment of Windows and NT programs that interface to HyperChem. The
type of development presented in this chapter uses the Window’s System
Developer’s Kit (SDK) approach, along with HAPI calls. The SDK
approach is a detailed and more fundamental way to develop Windows
programs than the approach of the next chapter.

e Chapter 13“Development Using the MFGjescribes the development
of Windows and NT programs that interface to HyperChem and use the
Microsoft Foundation Classes (MFC). The MFC, in conjunction with
C++ enables one to build a Windows program much more quickly but
with somewhat less flexibility than with the SDK of the last chapter.
Development of interfaces to HyperChem using the MFC are described.

» Chapter 14“Console C and Fortran Applicatighslescribes the inter-
face between Microsoft “console” applications (having no GUI) and
HyperChem. The emphasis here is on taking “legacy” Fortran programs
and having HyperChem provide a GUI for them.

» The three Appendices describe the complete set of Hcl script commands,
the set of Tcl/Tk script commands, and the details of each HAPI call.

Finally, the HyperChem CD-ROM and the associated installation of Hyper-
Chem 5.0 will provide you with a number of examples of the scripts, menu
files, and applications either discussed or perhaps not discussed in this CDK
manual. However, further material associated with the CDK will be found on
Hypercube’'s WWW site (http://www.hyper.com) and you should regularly
check that site for additional help.

Chapter 1

Chapter 2
Architecture of HyperChem

Introduction

This chapter contains information on the following architectural features of
HyperChem:

* The Front End - Back End Architecture
* The Master - Slave Architecture

* The Open Architecture

* The Client - Server Architecture

* The Network Architecture

The discussion here is given as general background on how HyperChem is
constructed so that you are in a better position to appreciate how and why cus-
tomization and interfacing become possible. The material of this chapter is
not strictly required for what follows in later chapters but should assist you in
understanding the CDK.

Since HyperChem, like most large commercial products, has an evolving
design and is certainly not the product of a single, totally rational, design pro-
cess, what is presented here is somewhat of a combination snapshot of both
the way it is and the way it is becoming. Nevertheless, what is described here
represents Release 5.0 in most regards.

The Front End - Back End Architecture

HyperChem basically consists of one monolifiiont Endand numerous

Back EndsIn the Windows and NT environment each of these components
has its own icon and is a completely separate program. For example, the green
beaker icon represents the HyperChem front end program. The falling red

11

The Front End - Back End Architecture

apple icon represents one of the back end programs - in this case, HyperNew-
ton.

Back e.g. Molecular Mechanics
DDE
Front
End
DDE _
Visualization |3EaC(;< e.g. Quantum Mechanics
n

The front end is the program that your interact with. It accepts input from you,

via the mouse and the keyboard, which constitute the GUI, and it provides
you with visualization services. For example, it may render a drawing of a

molecule for you.

The back ends generally perform the compute intensive computations.
HyperChem Release 5.0 comes with 5 back ends - HyperMM+, HyperNew-
ton, HyperEHT, HyperNDO, and HyperGauss. In principal, the back ends
compute only the energy of interaction of atoms and the first and second
derivatives of these energies. These energetic quantities feed the front end

which then computes chemically relevant properties. In practice, the subdivi-

sion of labor between a back end program and the HyperChem front end is
more complicated than this and depends on the situation.

One of the first things you might wish to consider as an application of the
CDK is to implement your own back end to replace one of the HyperChem
back ends. For example, you might like to have your own unique force field
in replacement of the MM+, Amber, etc. force fields of HyperChem.

In the Windows or NT environment, the HyperChem front end and the vari-
ous back ends communicate via DDE although one might have thought that

they would communicate through files. The HyperChem front end - back end

DDE communication, however, is more dive linkthan would be have been
possible via normal file reading and writing.

Chapter 2

The Older Master - Slave Architecture

The Older Master - Slave Architecture

The normal front end - back end relationship in HyperChem Release 5.0 is a
master - slave relationship, i.e. the front end is the master over a back end

slave.
Calculate Something!
—>
Front Back
End [P End
Master < Slave

Here is a Result!

The back ends do not initiate anything and do only as they are told by the front
end. If the front end requires the energy of a molecule, for example, it will
know whether a back end slave is idle, it will send the slave a molecule with
the instructions, “compute its energy,” and it will then wait for the slave to
return the result. The slave, when it is sent a molecule and the instructions for
computing some energetic quantity, will do so, returning the result to the front
end when it is finished. The slave will then return to an idle state waiting for
further instructions.

The Master - Slave Architecture is considered an older architecture by Hyper-
cube. It is slowly being replaced by a newer Client - Server Architecture as
described in the next section. However, the existing back ends being shipped
by Hypercube as part of Release 5.0 all still use the master - slave relation-
ship. The protocol between a master and a slave in HyperChem is, and has
always been, an unpublished proprietary protocol. As such, knowing the
explicit details of the protocol is essentially irrelevant to the CDK and to you,
the user. Itis presented here so that you can understand the basic architecture
of HyperChem. The newer client-server protocol described below is the pro-
tocol used by the CDK and is the one that you should expect to use in inter-
facing to HyperChem.

The Open Architecture

HyperChem has a@pen Architecturén that:

Architecture of HyperChem 13

The Open Architecture

* It can be driven by messages coming from other programs

» Other programs can read and write its internal data structures

The normal operation of HyperChem is via its GUI where you use the mouse

and keyboard to operate HyperChem’s menus and dialog boxes. HyperChem
attempts to allow an external program to operate it in the same way that you
do sitting in front of the screen, except that the external program sends script
messages (rather than clicking on a key or a mouse button, which a program
can’t do).

For example, an external program can access an internal variable, such as the
total energy, either for reading or writing, by sending a DDE message to the
HyperChem front end.

Front End] Back End
Proprietary DDE

< Protocol -

total-energ

Open DDE Protocol

External
Program

Only front end variables are available to external programs and all informa-
tion and state held solely by the back end is private to HyperChem. For exam-
ple, a back end program probably calculated the total energy but conveyed it
to the front end where it resides in a front end data structure.

These front end variables that are made available to external programs for
reading and writing are referred to as HyperChem State Variables (HSV) and
are part of the front end state. The front end HSV'’s are available for reading
and writing at any time whether or not a back end has computed a value. The
default value, in this case, is zero.

Chapter 2

The Open Architecture

UMSG and VMSG

Another way of looking at the open architecture of HyperChem is by way of
its message interface. In the normal use of HyperChem, via the GUI, a user
provides input with mouse clicks and keyboard clicks. We refer to these
inputs as user messages. Each constitutes a UMSG. The result of a UMSG is
that the internal state of HyperChem changes and a visual change may appear
on the screen. We refer to these visual changes as HyperChem having emitted
a VMSG. While the user is not explicitly aware of having sent and received
these messages, HyperChem does indeed operate this way.

IMSG and OMSG

The open architecture implies that messages equivalent to a UMSG or VMSG
can be sent and received by external programs as well as interacting human
users. For every UMSG there is expected to be an equivalent input message
(IMSG). However, IMSGs are a superset of UMSGs because there are many
times a program will want to interface to HyperChem in a way that a human
user would not. For example, a program may want to initiate a molecular
dynamics trajectory without bringing up a dialog box that a human must
respond OK to. The IMSG may or may not generate an output message
(OMSG) that augments the VMSG. These IMSGs and OMSGs constitute real
data that are conveyed to HyperChem, usually as text strings, by a script or a
DDE message.

Architecture of HyperChem 15

The Newer Client - Server Architecture

For example, a user clicking with the mouse on the menu item <File/Open>
will bring up the File Open dialog box. A program external to HyperChem
can do the identical thing by sending an IMSG,

menu-file-open

The resulting OMSG, in this case, is nil but the VMSG is identical to that gen-
erated by the UMSG.

The Newer Client - Server Architecture

For a number of reasons it makes sense to move away from the master - slave
architecture. In particular, if the services of the HyperChem front end are to
be made available to you, other users, and third party programmers, you must
be in command of the situation, not HyperChem. Thus HyperChem should act
as a universaerverto you, theclient

DDE A A i
/ Y Y /
New
Front Your 3rd
End Eﬁgk Program Party
1 Server
Back Clients
End

The HyperChem front end has essentially always acted as a server to external
programs as, for example, with ChemPlus, HyperNMR, or programs like
Microsoft Excel. The CDK, however, extends and documents this capability,
making it possible to even replace Hypercube’s proprietary back ends with
third party back ends.

These client programs are generally started by the HyperChem front end via
a custom menu in HyperChem. When the program begins executing it
requests services from HyperChem such as asking it to send a copy of the
coordinates of the molecule currently on the screen. It might then compute
properties of the molecule and then ask HyperChem to display these proper-
ties.

A client program need not reflect just a back end operation but could instead
augment the front end GUI or visualization capability of HyperChem. Your
program can be of arbitrary design using HyperChem only for functionality

Chapter 2

The Network Architecture

you do not want to reproduce. HyperChem can act as a GUI server, a compu-
tational server, or a visualization server all at the same time. The HyperChem
back ends are not directly accessible to external programs but only through
the HyperChem front end acting as a proxy.

The Network Architecture

As described above, the HyperChem front end, the HyperChem back ends,
and third party programs that are DDE compliant, such as Excel or programs
built with the Hypercube CDK, can communicate with each other via mes-
sages. This communication is initially assumed to occur on a single PC run-
ning Windows or NT.

Network DDE

UNIX

Microsoft, however, has implemented Network DDE, in Windows 95 and
NT. Thus it is possible to place any of the various components of a solution
onto different PCs as long as they are connected by an appropriate network .

Oold
Back Slave
End
A
A
A A A s
y Network Y y A
Front DDE lE\’;Iewk Your 3rd
ac
End End Program Party
Client

An old back end communicates with the front end by means of Hypercube’s
proprietary protocol while a new back end uses the open client-server proto-
col of the CDK.

While the following discussion is not strictly relevant to this Windows CDK,

a completely analogous CDK and capability is available for Unix versions of
HyperChem. In this case DDE is replaced by a Pipe and Socket capability.
The Unix versions of HyperChem have a front end - back end architecture as
well so that essentially everything we say here applies equally to the Unix

Architecture of HyperChem 17

The Network Architecture

world once DDE messages and communication are replaced by their Unix
equivalents. The HyperChem API, on the other hand, is portable across plat-
forms.

Remote Back Ends

Hypercube, Inc. supports the mixing of Windows and NT with Unix in the
sense that Remote Unix Back Ends are available for Unix machines from
Digital Equipment Corporation, IBM, Silicon Graphics, and SUN. This
allows a desktop PC to use a Unix machine to perform compute intensive
back end calculations.

These Unix back ends communicate in the older proprietary way with the
Windows or NT front end via a proprietary socket protocol. On the Windows
or NT side, DDE is replaced by equivalent socket (the WINSOCK standard)

messages.
Old :
Back Unlx_
End | Machine
Socket 1}
A
\
Windows
Front or NT

End | Machine

Mixing UNIX and Windows or NT

For completeness it ought to be possible to combine the Windows and NT
CDK and the Unix CDK to allow a Unix 3rd party client application to com-
municate properly with a Windows or NT desktop front end server. Alterna-
tively an NT client might like to use a UNIX machine for HyperChem visu-
alization services. It is not yet possible, however, to mix windows and Unix
for these CDK functions. One possible way to obtain this capability (Win-
dows front end HyperChem server and Unix back end client) would be to
have a 3rd-party Windows program receive Unix socket messages and trans-
late them into DDE messages for Windows HyperChem.

This and the other network aspects of HyperChem are pointed out here for
completeness. This manual and the Windows and NT version of the CDK do

18 Chapter 2

The Network Architecture

not attempt to describe the equivalent Unix product but relate only to the Win-
dows and NT programs described here.

Architecture of HyperChem 19

The Network Architecture

20 Chapter 2

Chapter 3
Customizing HyperChem

Introduction

This chapter describes how HyperChem can be customized via:

e Scripting

e Custom Menus

These two capabilities allow you to automate many of the computations you
perform with HyperChem or to customize HyperChem for your own pur-
poses. This chapter does not describe the interfacing of external programs to
HyperChem which, in itself, is a form of customization; that is left for later
chapters. Here we focus on how HyperChem can be customized through the
process of writing a set of scripts and through your ability, in Release 5.0, to
redefine the whole menu structure of the program if you chose to do so.

A Flexible Development Platform

Scripting and custom menus, by themselves, allow you to customize Hyper-
Chem in a very large variety of ways. It is possible to, in essence, start from
scratch with just a bare Window (no menus) and add only the capabilities you
wish. Any menu item can be tied to the execution of an arbitrary script. With
Release 5.0 and the CDK, we at Hypercube, Inc. are working towards a
Chemical Operating System that allows end users and third-party developers
to develop their own products using our tools. With the ability to interface
external programs to HyperChem and have them access any of the capabili-
ties of a custom HyperChem, a very flexible chemical development tool
becomes available.

21

What are Scripts?

What are Scripts?

A script consists of a sequence of individsiipt commandthat are held in

a script file. Each script command consists of simple text that can be executed
to invoke a HyperChem action, to read or write HyperChem data, etc. A script
can be created with a text editor such as the Windows Notepad. A script can
be executed in HyperChem by simply opening the script with the HyperChem
<Script/Open...> menu item. Alternatively, scripts can be created and exe-
cuted via the Script Editor of ChemPlus.

There are two kinds of scripts. The first consists of a simple straight-line
sequence of commands without any control structures (such as for-loops, if-
statements, etc.). These are referred to as Type 1 scripts. The second, much
richer, type of script has elaborate control structures and is referred to as a
Type 2 script. Type 2 scripts contain Type 1 script commands within them.

Type 1 (Hcl) Scripts

The first kind of script, the only kind available prior to Release 5.0, is referred
to as a Type 1 Script. These consist of a sequence of text lines of the form,

window-color green

The above script command, executed within a script, changes the background
workspace (window) color to green. Executing this script command is equiv-
alent to using the mouse and the <File/Preferences...> dialog box in the GUI
to change the window color. We will often use this simple script command,
one of potentially hundreds, to illustrate many of the basic ideas in the CDK.

With Release 5.0 and the CDK, one now refers to these script commands as
being part of the HyperChem Command Language (Hcl). Hcl commands in
the HyperChem Command Language, minus any possible arguments, are
identifiable as a contiguous sequence of words separated by hyphens, e.g.
menu-file-start-log

Type 1 scripts are held in. scr files, i.e they have a defautr file exten-
sion.

Type 2 (Tcl/Tk) Scripts

The newer scripts in Release 5.0 are referred to as Type 2 Scripts or as Tcl/Tk
Scripts. These scripts use a public domain Tcl/Tk interpreter that is part of
HyperChem Release 5.0. The interpreter can interpret Hcl script commands

22 Chapter 3

Type 2 (Tcl/Tk) Scripts

imbedded in normal Tcl/Tk code. The Tcl/Tk interpreter was developed by
John Ousterhout and collaborators at the University of California at Berkeley
and at Sun Microsystems. It is described in the following books that may be
important to you in becoming an efficient developer of Type 2 Scripts:

« Eric F. JohnsorGraphical Applications with Tcl & TKL996, M&T
Books, New York, N.Y., ISBN 1-55851-471-6.

« John K. Ousterhouf,cl and the Tk ToolkitLl994, Addison-Wesley,
Reading, Mass., ISBN 0-201-6337-X.

« Brent WelchPractical Programming in Tcl and Tk, Prentiekll, 1994.
It is also described at the following World Wide Web sites:

* http://www.sunlabs.com:80/research/tcl/

* http://www.sco.com/Technology/tcl/Tcl.html

The Tool Command Language orTcl part of Tcl/Tk describes a very general
scripting language that can embed custom scripting operations such as the Hcl
script commands. The Tk part of Tcl/Tk describes an extension to Tcl that
makes it possible to easily create a graphical user interface (GUI) having
menus, dialog boxes, etc. Thus a Type 2 script consists of a sequence of script
lines that are a mixture of Tcl/Tk (“tickle”) lines and Hcl (“hickle”) lines.

Type 2 scripts add variables, do- or while-loops, if-statements, and so on to a
script, so that a script can now be a very general purpose program having its
own GUI, visualization, etc. An simple example of a Type 2 script is:

TclOnly

seti10

while { $i >0} {

incri-1

if { ($i - 2*($i/2)) == 1 } then {
hcExec window-color black } else {
hcExec window-color white }

}
Exit

Customizing HyperChem 23

Custom Menus

Custom Menus

This script causes the background window color to alternate between black
and white. The while-loop has the variable i going from 10,9,8... to 1. For
even values of i the window color is set to black while for odd values of i it is
set to white. Th@clOnlycommand indicates that no Tk window is needed.

It should be the first command of any simple script that requires no addition
to the HyperChem graphical user interface. fitiExeqHyperchem execute)
command is always followed by the appropriate Hcl command, which in this
case sets the color of the HyperChem workspace window. Note that Tcl/Tk is
case sensitive; a command with the wrong case, suiati@dy, would be an
invalid command. A Tcl script is normally exited with tBgit command.

Type 2 scripts are held in. TcL files, i.e they have a defaultt file exten-
sion.

The whole while statement above is really a single Tcl/Tk command. The
while command contains other embedded Tcl/Tk commands plus embedded
Type 1 script commands. TheExeccommand embeds Hcl commands that
can be menu invocations, suchnasnu-file-opendirect commands, such as
do-molecular-dynami¢®r HSV writes, such asindow-color greenThe
correspondingncQuerycommand embeds HSV reads. Thus, the following

Tcl script creates a Tk window with a message, called .msg, contained in the
window and displaying the coordinates of each of the atoms:

message .msg -text [hcQuery "coordinates"]
pack .msg

Thepackcommand places widgets, such as .msg, in the main Tk window and
controls their layout. Tk widgets are normally named to begin with a “dot”.

With Release 5.0 of HyperChem, you can now redefine each and every menu
item to fully customize HyperChem'’s menus. When HyperChem is first
invoked, it has a standard set of menus as with any other Windows product.
However, if one subsequently executes the Hcl script command:

load-user-menu custom.mnu

then the standard menus are discarded and replaced by a new set of menus
defined by anenu filewhich, in the above case, is the fifest om.mnu.

These menu files define the custom text of each menu button (for each of the
new custom menus), and the action that is taken when each menu button is

Chapter 3

Custom Menus

pushed. The custom action for each menu button, as defined in the file, can
be any Hcl script command.

For example, to re-implement the <File/New> menu item exactly as it is
shipped in the default product, the custom menu file should request the action,

menu-file-new

when the appropriate button with text “New” on the “File” menu is pushed.

A menu file is basically just a description of the text and the keyboard assist
for each new menu button plus an associated Hcl script command for the but-
ton.

Because any of the button actions (Hcl script commands) could be of the
form,

read-tcl-script xxx.tcl

it is also possible to have any menu button execute a Tcl script. This results
in HyperChem being capable of having very generic menus and functional
capability. That is, since a Tcl/Tk script can be executed upon pushing any
menu button, and since a Tcl/Tk script can, in principle, accomplish any pro-
gramming task, there is no fundamental limitation to the generality of Hyper-
Chem.

The following menu file, for example, creates a version of HyperChem that
has a single menu (“Custom”) with a single menu item (“Version”) which
does nothing other than inform the user of the current release number when
the menu button is pushed,

MENU "&Custom"
ITEM "&Version",query-value version
END
New keyboard accelerators are not available for custom menu items. The
default HyperChem keyboard accelerators are always active. However, key-
board assists or shortcuts, usable with the Alt key and indicated by the amper-
sand, are available.

Before continuing with the description of user-defined menus and scripts for
customizing HyperChem, we will first elaborate on the concept of Hyper-
Chem State Variables (HSV’s). These are fundamental to the whole concept
of customization or interfacing.

Customizing HyperChem 25

Custom Menus

26 Chapter 3

Introduction

Chapter 4
HyperChem State Variables

This chapter describes a very important feature of HyperChem, the concept
of its current state and the variables that represent that state. These Hyper-
Chem State Variables (HSV’s) define the current state of visualization and
computation in HyperChem, e.g. the color of a window or the total energy of
a molecule, and can be read and written by scripts or by external programs.
these HSV's are registered when HyperChem is invoked and can be reliably
gueried or modified from then on.

Registering of HSV'’s

When HyperChem is first invoked, one of the things it does is to register, for
reliable import and export, a large number (hundreds) of data structures. In
cases these data structures are just simple variables rather than more compli-
cated arrays, lists, etc. By registering these data structures we mean that of all
the internal data structures that come and go dynamically in HyperChem,
these ones can be requested to be read or written at any time. Any registered
variable can be reliably and robustly accessed. If the HSV value is not yet
available, HyperChem will issue a simple warning at the attempted access.
You needn’t worry about writing an HSV value to HyperChem and causing

its internal operation to be badly perturbed, apart from the intended effect of
having a new value for an HSV.

An Example of an HSV

An example of a HyperChem State Variablevisdow-color The names for
these variables are fixed inside the code of HyperChem and may or may not
always be optimally descriptive. The variabi@dow-colordefines the back-
ground of the HyperChem workspace (the area displaying a molecular sys-
tem). It is commonly black but can be changed via the <File/Preferences...>

27

Introduction

menu item to be any one of the 8 basic HyperChem colors. The variable is an
enumerated variable of tyfimum That is, it is one of a small number of pre-
defined values represented internally in the computer by an integer but in
your program code as some member of the set {Black, Blue, Green, Cyan,
Red, Violet, Yellow, or White}.

Another example of an HSV with more chemical contedipsle-moment

This is a R/W variable also and behaves justiagow-color However, we
prefer to usevindow-colorin many of our examples because it is immedi-
ately visually obvious when this variable changes. The consequences of writ-
ing a new value for the dipole moment are also a little obscure. In actuality no
harm comes from writing an arbitrary value for the dipole moment to Hyper-
Chem; it just may not correspond to the correct dipole moment for the mole-
cule on the screen. It will be overwritten when a calculation, such as a wave
function calculation, is performed that computes the dipole moment.

Read/Write Nature of HSV'’s

All HSV’s can be classified as Read-Only (R) or as Read-Write (R/W). An
example of a variable that is read-onlgéected-atom-countyperChem
makes extensive use of “atom selections” and this variable reports the total
number of currently selected atoms. While it is possible to select atoms via a
script, it makes no sense to write new values of this variable that would con-
tradict the number of atoms that HyperChem determines to be currently
selected. This number will be automatically updated by HyperChem if an
external program were to select some atoms in HyperChem.

Using HSV's

Here we describe the reading and writing of the simplest type of HSV, a sca-
lar. Later, we will describe the reading and writing of HSV'’s that have a more
complicated structure. We use the simple H&Wdow-color as our exam-

ple.

Chapter 4

Introduction
Writing

An HSV is written by simply giving its new value after the variable, with or
without an equal sign. Thus the following are all appropriate Hcl script com-
mands for turning the background screen color to green:

window-color green
window-color = green
WInDOw-CoLOR=GReeN

Hcl script commands are case insensitive and spacing is ignored except
within the HSV name.

Reading

Two equivalent syntactical methods are available for reading HSV'’s. The
first is through a Hcl commanduery-valuewhich takes an HSV as an argu-
ment:

query-value window-color

The second and completely equivalent way to ask for the value of an HSV is
to simply name the HSV placing a question mark after it, separated by at least
one space:

window-color ?

Either of these procedures returns to the questioner (provided the HyperChem
screen is green) the output message (OMSG) string:

window-color = Green

The output message is returned to an external program, if that is who sent the
original query or, by default, to a message box on the screen if the original
query came from an internal script. Through the use of an Hcl script com-
mand,omsgs-to-filethe message string generated by the Hcl script can be
placed in a file rather than appear in a message box on the screen. Finally, the
returning OMSG string could have been shortened to just “Green” rather than
“window-color = Green” if the HS\Vquery-response-has-talgad been set to
falseprior to issuing the original query.

Notifications

It is possible to make a request to HyperChem that you be sent an OMSG
should the value of an HSV change. The message you might eventually
receive is identical to that which you could receive by performiqgeay-

value The OMSG is repeatedly sent to you whenever the variable changes it

HyperChem State Variables 29

Introduction

value. For data structures more complex than simple variables, the notifica-
tion is sent if any member of the data structure changes. For example, moni-
toring the window-color is accomplished with the script command,

notify-on-update window-color
The notification can be cancelled at any later time via the script command
cancel-notify window-color

Notifications are quite powerful and can be extremely useful. For example,
you could ask for a notification of the total-energy during an optimization and
easily plot a graph of the optimization with the values sent to you by Hyper-
Chem. These notifications are really only meaningful in the context of an
external program interfaced to HyperChem rather than in the context of an
internal script.

Atom Numbering for HSV's

It is important in using HSV's to understand how HyperChem numbers
atoms. Each molecule (connected graph) in the HyperChem workspace has
its own number (1, 2,...). The atoms in any molecule are numbered starting at
1 also. Thus a unique id for an atom includes two numbers - the molecule
number and the atom number within the molecule (atom-in-molecule num-
ber).

Thus if a number is to be used as a unique index for an atom, it has the form,
(atom number, molecule number). For example, (2,1) is the second atom in

the first molecule. The atom index always comes before the molecule index

in conventional HSV usage.

Argument Types for HSV’s

The types of arguments that HSV variables have are the following:
Boolean Yes or no, true or false, 0 or 1.

string Text (letters, characters, or symbols, in upper- or lower-
case, unlimited number of characters). Enclose a string in
quotes (“ ") if it contains spaces, tabs, or newline charac-

ters.

filename A type of string requiring a DOS filename.

enum A type of string requiring one of a limited set of possibili-
ties.

int An integer.

Chapter 4

Kinds of HSV'’s

float A floating point (decimal) number. For an angle, the num-
ber is in degrees.

An int or float may have limits which are checked. For example, create-atom
takes an int that is restricted to the range (1..103) and creates an atom with
this atomic number at the origin of the molecular system. Floats may have
similar limits. A string may not always need to be enclosed in quotes
(“string”) but it is safer to do so. Appropriate values for an enum depend on
the context, of course.

Kinds of HSV's

A number of different types of HSV'’s are available. They are classified by
how they are assigned values. The simplest are just scalars.

Scalar HSV's

A scalar HSV is one which does not use an index. A simple exampkexis
iterations the maximum number of allowed iterations in a self-consistent-
field (SCF) calculation. The argument is an int in the range (1..32767) and an
assignment (write) looks as follows:

max-iterations = 100
The equal sign is not strictly necessary and white space will do:
max-iterations 100

The number of arguments for a scalar HSV, while normally one, it not
restricted to one. For example the HSlijole-moment-componentakes

three float arguments - the x, y, and z components. It is defined as a scalar
since you do not use an array index with it but assign or query all its compo-
nents simultaneously. It is written or assigned, with a flexible syntax, as fol-
lows:

dipole-moment-components 1.0 2.0 3.0
dipole-moment-components = 1.0 2.0 3.0
dipole-moment-components = 1.0, 2.0, 3.0

That is, the arguments may begin with an equal sign or not, be separated by
commas or not, etc. The syntax is flexible but equal sighs and commas are
suggested as an appropriate convention.

HyperChem State Variables 31

Kinds of HSV’s

Vector HSV'’s

A vector HSV is one which takes a single index. An example is the HSV,
alpha-orbital-occupancyThis variable describes the number of electrons in
an alpha (spin up) molecular orbital from an unrestricted Hartree-Fock (UHF)
calculation. When the calculation is a restricted Hartree-Fock (RHF) calcula-
tion having no beta occupied orbitals different from alpha occupied orbitals
then thealpha-orbital-occupancyariable describes the total occupancy of
alpha and beta electrons in an orbital. Thus the arguments are 0 and 1 for UHF
calculations and 0 and 2 for RHF calculations. Thus, foydd can exter-

nally set the first (HOMO) orbital to be occupied and the second (LUMO)
orbital to also be occupied (corresponding §3')—by the following script
commands:

alpha-orbital-occupancy(1) 2
alpha-orbital-occupancy(2) 2
or, equivalently,
alpha-orbital-occupancy(1) = 2
alpha-orbital-occupancy(2) = 2
For a standard minimal basis calculation g tHe query,
alpha-orbital-occupancy ?
would return the normal result
alpha-orbital-occupancy(1) = 2
alpha-orbital-occupancy(2) = 0
That is, even though a query such as
alpha-orbital-occupancy(1) ?

is perfectly valid, it is possible to query for all relevant indices (1..2) at once,
as we have done above. It is, of course, also possible to use the alternative
syntax,

query-value alpha-orbital-occupancy(1)

Chapter 4

A Finite State Machine View of HyperChem

Array HSV’s

An array HSV is defined to be one which takes two indices. These two indices
arealwaysthe atom index and the molecule index (iat, imol). If one thinks of
this combination as a single unique index, then an array is just a vector where
the index is a unique atom number. A simple example is the mass of an atom
which is represented by the HSatpm-massThe atomic masses oiould

be assigned as follows,

atom-mass(1,1) = 1.008
atom-mass(2,1) = 1.008

That is, the first and second atoms of molecule one are assigned. Another
example is the Cartesian coordinates of the atoms. This is an array with 3
arguments analogous to the dipole moment components above. The coordi-
nates of H, again, could be assigned as follows,

coordinates (1,1) = 0.0, 0.0, 0.0
coordinates (2,1) = 0.0, 0.0, 0.74

An alternative to this is to assign all coordinates at once,
coordinates=0000 0 0.74

Note again that there is flexibility in using commas or equal signs or not using
them.

A Finite State Machine View of HyperChem

HyperChem has the characteristics of a Finite State Machine (FSM). By this
it is meant that HyperChem has a finite set of internal states; an input received
while in a particular state causes a transition to a new state with the conse-
guent emission of an output. The set of states and the set of inputs/outputs
associated with the set of possible state transitions fully characterizes an
FSM.

In the HyperChem case, the inputs are messages and the outputs are mes-
sages. these messages are of four kinds (two input and two output):

* User message (UMSG) - an input message coming from the user using
the mouse of keyboard.

HyperChem State Variables 33

A Finite State Machine View of HyperChem

* Visual message (VMSG) - an output message representing a visual
change in the screen.

* Input message (IMSG) - an input message coming from a script or from
a Dynamic Data Exchange (DDE) message.

» Output message (OMSG) - an output message going to a script directed
target or to an external receiver of DDE messages.

The normal interactive use of HyperChem has UMSGs as input and VMSGs
as output. That is, when you click the mouse, something changes on the
screen. It is possible to drive HyperChem with IMSGs rather than a mouse or
keyboard. With an IMSG for input, one obtains possibly both a VMSG and
an OMSG for output. That is, an IMSG, in addition to causing a visual change
on the screen may result in an OMSG being sent to a receiver associated with
the sender of the IMSG.

IMSGs are meant to be a superset of UMSGSs. It is intended that anything you
can do with the mouse you can do with an IMSG. In addition, IMSGs will
trigger actions and state changes that are impossible by direct interaction. The
target for OMSGs depends on the source of the IMSG and on the redirection
of OMSGS by previous IMSGs. These generic concepts have two current
implementations. One is implemented by the Hcl scripting language and the
other is implemented by dynamic data exchange (DDE).

As an example of the state machine aspects of HyperChem, consider two
states of HyperChem shown below as circles. The state is whether a stick ren-
dering is shown on the screen as a hormal image or as a stereographic image.
Equivalently, the two states are described by an internal HyperChem State
Variable (HSV) calledhow-stereowhen this variable is false, a normal

(mono) image is displayed but when this variable is true, a double (stereo)
image is displayed. The transitions between the two states are represented as
arrows. the transition is triggered by an <input> and results in an <output>
and each transition (arrow) is labelled:

transition: <input>/<output>

The input in this case is an IMSG of type “show-stereo”, the name of the
HSV, with an argument (part of the data of the message) of either “true” or
“false”. The output message is simply a VMSG that changes the screen dis-
play. No OMSG is emitted in this case.

Chapter 4

An HSV Server View of HyperChem

show-stereo false / see mono rendering

show-stereo true / see stereo rendering

An HSV Server View of HyperChem

The HyperChem State Machine acts as a universal HSV Server in a Client-
Server architecture. This is consistent with HyperChem attempting to be a
core component of any chemical computation. Other programs, scripts, and
third-party processes are clients that HyperChem serves. Consider a third-
party application such as one that you would potentially write. If you want the
molecular coordinates to perform a calculation with, you must make a request
to HyperChem for the coordinates rather than expect HyperChem to send
them on its own. HyperChem is sitting in a loop servicing requests like this
as they come in. When it receives the request from you for coordinates, it
sends them and then looks for another request. Some of these requests come
from a user interacting with a mouse and some come from you and your pro-
gram requesting further data, requesting the ability to access certain Hyper-
Chem functionality, or requesting a change in HyperChem'’s internal state via
the setting of a HyperChem State Variable (HSV). These server requests are
what we have called UMSGs or IMSGs above. A UMSG comes from an
interacting user clicking on a mouse or the keyboard while an IMSG is an
internal request in a script or an external request coming in a DDE message.

Further information on HSV's is contained in Chapter 6, Appendix A, or the
HyperChem Reference Manual.

HyperChem State Variables 35

An HSV Server View of HyperChem

36 Chapter 4

Chapter 5

Custom Menus

Introduction

This chapter describes in detail the customizing of HyperChem via your abil-
ity to add menu items to the <Script> menu plus your ability to redefine com-
pletely the menu structure with a meru finu) file.

Script Menu Items

There has been the ability in earlier releases of HyperChem to add menu items
to the <Script> menu. This capability is still there, with two slightly different
ways of invoking it (using the “third” menu item as an example):

” o

(1) change-user-menuitem 3, “Sample”, “sample.scr”

script-menu-enabled(3) = true

(2) script-menu-caption(3) = “Sample”
script-menu-command(3) = “read-script sample.scr”

script-menu-enabled(3) = true

Executing the above scriftxamplel . scr from the HyperChem CD-

ROM, illustrates this behavior. For simplicity, themple. scr file con-

tains only the single Hcl script commamdndow-color=greenwhich gives

a quick visual feedback of the effect of the new menu item. The new menu
item is shown below:

37

Menu Files

Menu Files

TH, HyperChem - [untitled) 10| =]

File Edit Build Select Display Databazes Setup Compute [RSfsisill Cancel

Help Open Script...
D|O[L|0]+|ws | o] D= % [m=(@ &

| | [Mm+ 7

Up to ten new menu items, with vector indices 1..10, are available under the
<Script> menu. Each new menu item shows up in the order associated with
the vector index which was assigned to it, such as the “3” above. Menu items
that have not been assigned a caption do not show up.

What is new in Release 5.0 of HyperChem is that, in addition to adding new
menu items in the <Script> menu, all the menu items can now be designed
from scratch and instead of just executing a Hcl script any menu item can now
execute a much more generic Tcl/Tk script.

This new functionality comes about via the three new Hcl script commands,
load-user-menu <menu file (* mnu)>
load-default-menu
switch-to-user-menu

The first of these loads and switches HyperChem to a set of custom menus
defined in a menu file. The remaining two switch back and forth between the
defaulthard-wiredmenus and the useastommenus, provided they have
been defined earlier by the first script command of the above three.

Chapter 5

’

’

’

Menu Files

A menu file need not have the mnu extension since it simply a text file but

it is convenient for menu files to be recognized with their own extension.
These menu files define the left-to-right and top-to-bottom structure of a com-
plete set of menus via sequential text lines of the form,

MENU <text-string>
ITEM <text-string>, <Hcl-script-command>
ITEM ...

END

The text string is the text that you see on the menu or menu item, including
the naming of a possible keyboard assist via the ampersand, “&”, being
placed prior to the character that is to be used with the Alt key, as per the
Microsoft Windows standard. If a menu has no subset of items but is its own
menuitem and can be activated by clicking on it alone, it is defined in the
form,

MENUITEM <text-string>, <Hcl-script-command>

Cascading menus are not supported. The menu file that corresponds to the
default set of hard-wired menus is on the HyperChem CD-ROM as
default.mnu. It looks as follows:

1996 (c) Hypercube, Inc.
User Customizable Menu

MENU "&File"

ITEM "&New\tCtrl+N",menu-file-new

ITEM "&Open...\tCtrl+0",menu-file-open

ITEM "&Merge...",menu-file-merge

ITEM "&Save\tCtrl+S",menu-file-save

ITEM "Save &As...\tCtrl+A",menu-file-save-as
SEPARATOR

ITEM "S&tart Log...",menu-file-start-log

ITEM "Stop Lo&g",menu-file-stop-log

ITEM "&Log Comments...",menu-file-log-comments
SEPARATOR

ITEM "&Import...",menu-file-import

ITEM "&Export...", menu-file-export

SEPARATOR

ITEM "&Print...\tCtrl+P", menu-file-print
SEPARATOR

ITEM "Pré&eferences...",menu-file-preferences

Custom Menus

39

Menu Files

SEPARATOR
ITEM "E&xit",menu-file-exit
END
MENU" &Edit"
ITEM "&Clear\tDelete",menu-edit-clear
ITEM "C&ut\tCtrl+X",menu-edit-cut
ITEM "Cs&opy\tCtrl+C",menu-edit-copy
ITEM "Copy ISIS Sé&ketch",menu-edit-copy-isis-sketch
ITEM "&Paste\tCtrl+V",menu-edit-paste
SEPARATOR
ITEM "Cop&y Image\tF9",menu-edit-copy-image
SEPARATOR
ITEM "&Invert",menu-edit-invert
ITEM "&Reflect",menu-edit-reflect

SEPARATOR

ITEM "Rotaté&e...",menu-edit-rotate

ITEM "&Translate...",menu-edit-translate

ITEM "&Zoom...",menu-edit-zoom

ITEM "Z C&lip...",menu-edit-z-clip

SEPARATOR

ITEM "&Align Viewer...",menu-edit-align-viewer

ITEM "Align &Molecules...",menu-edit-align-molecules

SEPARATOR

ITEM "Set &Bond Length...",menu-edit-set-bond-length

ITEM "Set Boné&d Angle...",menu-edit-set-bond-angle

ITEM "Set Bo&nd Torsion...",menu-edit-set-bond-torsion
END

MENU" &Build"
ITEM "&Explicit Hydrogens",menu-build-explicit-hydrogens
ITEM "&Default Element...",menu-build-default-element
ITEM "&Add Hydrogens",menu-build-add-hydrogens
ITEM "&Model Build",menu-build-model-build
SEPARATOR
ITEM "Allow &Ions",menu-build-allow-ions
ITEM "&United Atoms",menu-build-united-atoms
ITEM "A&ll Atoms",menu-build-all-atoms
SEPARATOR
ITEM "Calculate T&ypes",menu-build-calculate-types
ITEM "Compile Type &Rules",menu-build-compile-type-rules

SEPARATOR

ITEM "&Set Atom Type...",menu-build-set-atom-type
ITEM "Set &Mass...",menu-build-set-mass

ITEM "Set Cé&harge...",menu-build-set-charge

40 Chapter 5

Menu Files

ITEM "&Constrain Geometry...",menu-build-constrain-geometry
ITEM "Constrain &Bond Length...",menu-build-constrain-bond-length
ITEM "Constrain Bond An&gle...",menu-build-constrain-bond-angle
ITEM "Constrain Bond &Torsion...",menu-build-constrain-bond-
torsion
END

MENU" &Select"
ITEM "&Atoms",menu-select-atoms
ITEM "&Residues",menu-select-residues
ITEM "&Molecules",menu-select-molecules

SEPARATOR

ITEM "M&ultiple Selections",menu-select-multiple-selections
ITEM "&Select Sphere", menu-select-select-sphere
SEPARATOR

ITEM "S&elect All",menu-select-select-all
ITEM "&Complement Selection",menu-select-complement-selection

ITEM "Seé&lect...",menu-select-select
ITEM "&Name Selection...",menu-select-name-selection
SEPARATOR

ITEM "E&xtend Ring",menu-select-extend-ring
ITEM "Ex&tend Side Chain",menu-select-extend-side-chain
ITEM "Extené&d to sp3",menu-select-extend-to-sp3
ITEM "Select Bacé&kbone",menu-select-select-backbone
END
MENU"&Display"
ITEM "&Scale to Fit\tSpace",menu-display-scale-to-fit
ITEM "&Overlay",menu-display-overlay
SEPARATOR
ITEM "Show &All",menu-display-show-all
ITEM "Sho&w Selection Only",menu-display-show-selection-only
ITEM "&Hide Selection",menu-display-hide-selection

SEPARATOR

ITEM "&Rendering..."menu-display-rendering

ITEM "Last Renderin&g\tF2"menu-display-last-rendering
SEPARATOR

ITEM "Show &Isosurface\tF3"menu-display-isosurface

ITEM "Isosuré&face...\tF4"menu-isosurface-control

SEPARATOR

ITEM "Show H&ydrogens",menu-display-show-hydrogens

ITEM "Show Periodic &Box",menu-display-show-periodic-box
ITEM "Show &Multiple Bonds",menu-display-show-multiple-bonds
ITEM "Show Hyé&drogen Bonds",menu-display-show-hydrogen-bonds
ITEM "Recompé&ute H Bonds",menu-display-recompute-h-bonds

Custom Menus 41

Menu Files

ITEM "Show Inertial Ag&xes",menu-display-show-inertial-axes
ITEM "Show Dipole Momené&t",menu-display-show-dipole-moment

SEPARATOR

ITEM "&Labels...",menu-display-labels

ITEM "&Color...",menu-display-color

ITEM "&Element Color...",menu-display-element-color
END
MENU"D&atabases"

ITEM "&Amino Acids...",menu-databases—-amino-acids

ITEM "&Make Zwitterion",menu-databases-make-zwitterion
ITEM "&Remove Ionic Ends"menu-databases-remove-ionic-ends

SEPARATOR
ITEM "&Nucleic Acids...",menu-databases—-nucleic-acids
ITEM "Add &Counter Ions",menu-databases—-add-counter-ions
SEPARATOR
ITEM "M&utate...",menu-databases-mutate
END
MENU "Seé&tup"
ITEM "&Molecular Mechanics...",menu-setup-molecular-mechanics
ITEM "&Semi-empirical...",menu-setup-semi-empirical
ITEM "&Ab Initio...",menu-setup-ab-initio
SEPARATOR
ITEM "&Periodic Box...",menu-setup-periodic-box
ITEM "&Restraints...",menu-setup-restraints
ITEM "Set &Velocity...",menu-setup-set-velocity
SEPARATOR
ITEM "S&elect Parameter Set...",menu-setup-select-parameter-set
ITEM "Cé&ompile Parameter File",menu-setup-compile-parameter-file
SEPARATOR
ITEM "&Reaction Map...", menu-setup-reaction-map
END
MENU "&Compute"
ITEM "&Single Point",menu-compute-single-point
ITEM "&Geometry Optimization...",menu-compute-geometry-
optimization
SEPARATOR
ITEM "&Molecular Dynamics...",menu-compute-molecular-dynamics
ITEM "&Langevin Dynamics...",menu-compute-langevin-dynamics
ITEM "Monte &Carlo...",menu-compute-monte-carlo
SEPARATOR
ITEM "&Vibrations",menu-compute-vibrations
ITEM "&Transition State...",menu-compute-transition-state
SEPARATOR

42 Chapter 5

Simple Example

ITEM "&Plot Molecular Properties...", menu-compute-plot-molecular-
properties

ITEM "&Orbitals...",menu-compute-orbitals

SEPARATOR

ITEM "Vi&brational Spectrum...",menu-compute-vibrational-spectrum

ITEM "&Electronic Spectrum...",menu-compute-electronic-spectrum

END

MENU "Scé&ript"

END

ITEM "O&pen Script...",menu-script-open-script
ITEM "&Compile Script...",menu-script-compile-script

MENUITEM "Caé&ncel",menu-cancel
MENU "&Help"

END

ITEM "&Index",menu-help-index

ITEM "&Keyboard",menu-help-keyboard

ITEM "&Commands",menu-help-commands

ITEM "&Tools",menu-help-tools

ITEM "&Scripts \& DDE",menu-help-scripts-&-DDE
ITEM "&Glossary",menu-help-glossary

ITEM "&Using Help",menu-help-using-help

SEPARATOR

ITEM "&About HyperChem", menu-help-about-hyperchem

An extension of this menu file, callethemplus .mnu, is on the Hyper-
Chem CD-ROM to enable users of Release 5 to continue using ChemPlus
from menu items. [Although ChemPlus 1.5 continues to work with Hyper-
Chem 5.0, the ChemPlus modules cannot be activated by menu items except
through a menu file such as described here].

Simple Example

The custom menus can be illustrated by executing the script,
Example?2.scr from the HyperChem CD-ROM:

script-menu-caption(1) = "Rotate Menus"
script-menu-command(1) = "load-user-menu rotate.mnu"
script-menu-enabled(1) = true

This script puts a new menu item in the <Script> menu. The new menu button
has the text, “Rotate Menus” on it. Pushing this menu button will execute a
script command, as shown above, that loads a custom set of user menus
(rotate.mnu) rather than the hard-wired default menus that come with the

Custom Menus 43

Simple Example

product. A set of custom menus is characterized by a menu fiben(a),
which in this case is the set of menus definetldnate .mnu (from the
HyperChem CD-ROM):

MENU "&File"
ITEM "&New\tCtrl+N", menu-file-new
ITEM "&Open.. tCtrl+QO", menu-file-open
ITEM "E&xit",|load-default-menu

END

MENU"&Rotate"
ITEM "&X Axis" ,read-tcl-script rotatex.tcl
ITEM "&Y Axis" read-tcl-script rotatey.tcl
ITEM "&Z Axis" read-tcl-script rotatez.tcl

END

MENUITEM "Ca&ncel",menu-cancel

This menu file is characteristic of all menu files in that it simply defines the
individual menus and menu items from left to right and top to bottom. The
key words MENU, MENUITEM and ITEM introduce a normal menu, a menu
without any underlying items, and an individual menu item within a menu.
Each menu is defined by the text string label for that menu while each menu
item is defined by the text string plus a Hcl script command that is executed
when that menu item is chosen. Each text string can be assigned a keyboard
assist with the ampersand, “&”.

The way to have this file define menus that are identical to the default hard-
wired menus is to define a menu item with a script command thaténa
invocationsuch as,

menu-file-new

A menu item can be set to execute any Hcl script command. By using the
script commandggead-scriptandread-tcl-script any generic Hcl script or
Tcl/Tk script stored in a file can be triggered by each custom menu item. In
the above case, a Tcl script file is attached to each member of a set of three
menu items for continuously rotating the molecular system about the x, y, or
z axis. The menu item <File/Exit> has been set to execute a script command
that returns to the hard-wired default menus. In this way it is simple to go back
and for between the two sets of menus by just clicking on menu items, i.e. by
clicking on <Script/Rotate Menus> to obtain the special menus for rotation
only and by clicking on <File/Exit> to return to the default menus. Executing

44

Chapter 5

Simple Example
the originalExample2.scr script and then clicking on <Script/Rotate

Menus> gives a version of HyperChem that is shown below.

T, HyperChem - [untitled) o] 4

File QsBIEIENM Cancel

el th

&7 DR ¥ |=(@ S 28

N
A

| | (M7

The rotatez.tcl script, which is included on the HyperChem CD-ROM, rotates
the molecule about the z axis and is as follows:

TclOnly

hcExec "query-response-has-tag false"
hcExec "cancel-menu = true"

for {set i 0} {$i < 36500} {incr i} {
hcExec "rotate-molecules x 5"

set we_quit [hcQuery cancel-menu]

if { Swe_quit == "false" } { break }
update

}

This is not the place to describe Tcl/Tk scripts in detail but this script is fairly
simple and illustrates many of the general ideas of how universal is the ability
to customize HyperChem. The first Tcl command, TclOnly [note that Tcl/Tk
is case sensitive] indicates that this script needs no graphical user interface

Custom Menus 45

Simple Example

GUI) or extra windows. By default, without this command, a simple window
is put up where any Tk widgets are placed. Since we do not want this window,
we indicate that this Tcl/Tk script is a Tcl only script without any extra visual
elements.

The HyperChem command language, Hcl, and the HyperChem GUI do not
have any capability for continuously rotating a molecule. The GUI allows for
manually rotating a molecule and the script command,

rotate-molecules x <angle>

rotates the molecular system about, in this case, the x axis by <angle> degrees
as a one-shot, non-continuous motion. To see continuous motion, the <angle>
must be small and the script command repeated a large number of sequential
times even for a “single” rotation. The way to obtain continuous rotation, of
course, is to have a do, while or for-loop of these individual rotation com-
mands. The Tcl code above has a simple “for-loop over i” of 36500 iterations.

It remains only to describe the Hcl script commands that are embeded inside
Tcl and the handling of the Cancel menu.

The Tcl language embeds all possible Hcl commands into the language
through the syntax,

hcExec <Hcl script command> and
hcQuery <name of HSV>

The basic idea here is to place the Hcl script commatate-molecules

(about the z axis by 5 degrees), inside the for-loop as is done in the above
script. The remaining complexity of the Tcl script is all associated with the
handling of the Cancel button. Without the Cancel button, the rotation would
go on forever, or at least for 7200 complete rotations. The trick is to sense
whether the Cancel button has been pushed while executing the loop and
break out of the loop if this is so. As with all queries of HSV's, there is the
possibility of the answer coming back with a tag, such as “cancel-menu=true”
or as just the raw value, “true”. We first ensure that only raw values are
returned so as to simplify the parsing required. We thus execute the Hcl script
command,

query-response-has-tag = false
Next, we disable (gray-out) the usual menus and enable (blacken) the Cancel
menu via the following script command, just prior to beginning the rotation,
cancel-menu = true

This (Cancel-enabled, Normal-disabled) state of HyperChem can be moni-
tored by enquiring about the HS¥ancel-menulf it is true, then the Cancel
button is enabled and it can be clicked upon at any time. If you do click on

46

Chapter 5

Further Customization

this Cancel button, it becomes disabled and the value of the HSV becomes
false. The Tcl script looks for this cancel operation each iteration and breaks
out of the loop if it occurs. The only other Tcl command that needs comment
is the update command. Without this, Tcl would not temporarily release con-
trol to Windows and sense the change made to the cancel-menu HSV in
HyperChem. It would be busy just executing “its own for-loop code”. When
you want an immediate update of a Tk dialog box or a HyperChem HSV, it is
best to place an appropriate update command inside a Tcl script.

Further Customization

The name of the HyperChem window can be modified to identify specific
custom versions of HyperChem. The is very straight forward using the fol-
lowing Hcl script command.

custom-title <addendum to HyperChem name>

In addition, if so desired, the tool bar can be eliminated usingdeetoolbar
HSV. Thus, the Hcl script, stored on the HyperChem CD-ROM as
Example3.scr,

custom-title = “My Version”
hide-toolbar = true

results in the following window, having a custom name and no toolbar. It is
still possible without a toolbar to change the HyperChem cursor tool using the
mouse-modeiSV.

Custom Menus 47

Further Customization

i HyperChem/My Yerzion - [untitled] -0l =l
File Edit Build Select Dizplay Databasez Setup Compute Script Cancel

Help

|Screen capture to clipboard bitmap complete. | |Mm+ i

48 Chapter 5

Introduction

Chapter 6
Type 1 (Hcl) Scripts

Type 1 scripts, the simplest scripts, are simple sequences of script commands
each of which conform to thdyperchem Command Languagc! - pro-
nounced “hickle"). These scripts have been part of HyperChem since its
inception but with the addition, in Release 5.0, of Tcl/Tk scripting capability,

it is necessary to clarify our terminology somewhat. Thus, what was previ-
ously referred to simply as a script command or script message now becomes
a Hcl command or Hcl script command. These Hcl script commands can con-
stitute the totality of a script, be imbedded in a Tcl script, or be the content of
certain external messages sent to HyperChem by other programs. A script that
consists solely of Hcl commands is a Type 1 or Hcl script.

Hcl Script Commands

HSV’s

A Hcl script consists of a sequence of Hcl script commands, each of which is
a single line of Ascii text. These Hcl script commands are of four types:

e AnHSVread
e An HSV write
* A menu activation

* Adirect command

The HyperChem State Variables (HSV’s) have been described in Chapter 4.
HyperChem makes these variables available to external programs and to
internal scripts, for reading and possibly for writing. They need not be
described again here other than for completeness in describing Hcl script
commands. Usindipole-momenas an example of an HSV, a Hcl script com-

49

Introduction

mand can read the value (enquire about the current value that HyperChem
maintains) by the Hcl script command,

query-value dipole-moment
or, alternatively, via the equivalent but slightly different syntax,
dipole-moment ?

You can write the value (assuming you wish to assign a value of 2.5 Debyes
to the dipole moment) via the Hcl script command,

dipole-moment 2.5

Menu Activations

A menu activation is a replacement for the user clicking with the mouse on a
menu item (menu button). Every menu item of HyperChem has an equivalent
Hcl script command that accomplishes exactly the same effect as clicking on
the menu item. These Hcl script commands all start with “menu-" and then
name the particular menu and finally a string representation of the particular
menu item, all separated by hyphens. Thus, the equivalent of clicking on the
menu item <File/Save As...> is to open.acr file and execute the Hcl

script command,

menu-file-save-as

All these menu activations are listed in the HyperChem Reference Manual but
each can be inferred just by looking at the HyperChem menus and putting a
hyphen between every word of the text of the menu item. Thus, Heatugp

Menu contains the menu butt&elect Parameter Set.the proper script
command is,

menu-setup-select-parameter-set

One exception, of sorts, to this rule is the “Model Build...” menu item which
sometimes reads, “Add H & Model Build...” The script command is always,

menu-build-model-build

Direct Commands

To open (read in) a file you normally click with the mouse on the menu item
<File/Open...> and bring up a dialog box to be filled out with appropriate dia-
log box values prior to hitting the OK button which initiates the reading in of
the file. Suppose you wanted to read in a Protein Data Bank (PDB) file. Then,
prior to hitting OK, you need to set the default file type te benT in the

dialog box in addition to choosing the name of the appropriate file that you

Chapter 6

Introduction

want to read in. You might like a script to automate these actions but if you
used the script command

menu-file-open

the script would stop with the File Open dialog box sitting on the screen wait-
ing for you to hit the OK button to initiate the reading of the file. This is any-
thing but automation if you have to be there to click on OK! Scripts must go
beyond imitating the actions of a user at a keyboard or with mouse in hand.

To solve this problem, a script command is needed that initiates the reading
of a file using the current values of the dialog box settings without bringing
up the dialog box at all. If different setting are needed than are in the prospec-
tive dialog box, these values can be set prior to calling for the opening of the
file. The script commandpen-file filenamaloes the job. It is direct com-
mandthat bypasses a dialog box to get the job done using the current dialog
box settings. If you wanted to read, for example, a glucagon PDB file you
could simply execute the script,

file-format pdb
open-file glucagon.ent

This is completely equivalent to invoking the <File/Open...> dialog box,
selecting PDB as the file format, filling in the File Name as glucagon.pdb, and
hitting OK to dismiss the dialog box and initiate the reading of the file.

Other direct script commands cause actions that have no immediate mapping
to a GUI action. The direct script commands consist of the name of the com-
mand followed by one or more arguments, each separated by at least one
space or a comma:

hcl-command-name <argument1>, <argument2>, ...

An argument is one of:

Arguments

The types of arguments for variables or commands are the following:
Boolean Yes or no, true or false, 0 or 1.

string Text (letters, characters, or symbols, in upper- or lower-
case, unlimited number of characters). Enclose a string in
quotes (* ") if it contains spaces, tabs, or newline charac-
ters.

filename A type of string requiring a DOS filename.

Type 1 (Hcl) Scripts 51

Introduction

enum A type of string requiring one of a limited set of possibili-
ties.

int An integer.

float A floating point (decimal) number. For an angle, the num-

ber is in degrees.
Another example of a direct command is:
do-molecular-dynamics

This allows a script to perform molecular dynamics calculations without the
manual intervention of a dialog box. Prior to executing this direct command,
the script could set all the relevant HSV’s for molecular dynamics. This is
equivalent to what one is really doing in filling out the molecular dynamics
dialog box. For example, the length of the MD trajectory, the dynamics run
time, could be set to 100ps via the script command,

dynamics-run-time 100

Alternatively, one can just accept default values for the relevant HSV’s which
are just the current values in the dialog box left over from the last time it was
invoked. As with almost any situation in HyperChem, reasonable default val-
ues are available and are used when you choose not to specify further details.

Script Files

Type 1 scripts are normally stored in files with a default file extension of

* . SCR. These files consist of nothing more than a sequence of individual Hcl
script commands, stored in an Ascii text file with a file name that hasthe

file extension. A script is normally executed by opening scr script file

with the <Script/Open...> menu item.

52 Chapter 6

Introduction

Run Scrpt

Lok jm: I 23 chapth

File name: |buildc6l oK |
Filez of type: IHyperEhem Command Language-HcI[*.SEH]ﬂ Cancel |

Comments:

buwild CED -

Authar: Bill Glauszer - July 92
M odifed: Mark Davies - March 92
Modified: Meil Oztlund September 96 ;I

A Hcl script file is simply a text file and while it is not essential to use the
* . scr extension, that is the useful default extension used by HyperChem.

A trivial example of & . scr file isversion. scr, one that contains the
single line,

version ?
This script file, when opened, queries for the Release Number or Version of
HyperChem, in case you are not sure what it is. That is, it requests the value

of the HSV, “version”. The result will be reported to you in a message box on
the screen.

CHEM.SCR

When HyperChem is started, one of things it does before handing over control
to you as a user is to execute a default initialization Hcl script. If HyperChem

Type 1 (Hcl) Scripts 53

Examples

finds a script, CHEM.SCR, in its path then it executes that script as a final part
of its initialization. If this file does not exist or HyperChem cannot find it in
its path, then no such specialized initialization is performed. This allows you
to set up a script and place itin CHEM.SCR to customize your copy of Hyper-
Chem right from its instantiation, without ever having to explicitly execute a
script. If you have your own customization of HyperChem that you like to use
on a semi-permanent basis, you should place the relevant script into
CHEM.SCR.

Compiled Scripts
A script can be compiled, if desired. The compilation resultsincecr file.
Thus, the following script command compiltesx . scr into xxx . ocr,
compile-script-file xxx.scr xxx.ocr

Compiled scripts can be opened by HyperChem just as text scripts (see the
file filter in the <Script/Open...> dialog box).

Recursive Scripts
Scripts files can contain script commands to open other script files. Thus, the
script filea . scr could contain a script command,
read-script b.scr

When this second scrigt,. scr, completes, control is returned to the script
command ire . scr following the above call tab . scr.

Script Editor

The companion product to HyperChem, ChemPlus, includes a script editor
that makes it easy to create and execute individual Hcl script commands or
whole or partial Hcl script files.

Examples

This section begins a description of a number of example Hcl scripts. There
are a large number of HSV'’s and direct script commands contained in Hyper-
Chem and learning them all is not a simple matter. One of the best ways is to
study example scripts and ultimately to write a number your own scripts. The

54 Chapter 6

Examples

examples here will give you some idea of the power of the HyperChem Com-
mand Language but its real power ultimately comes in conjunction with the
control structures that Tcl can add or the GUI that Tk can add. Hcl scripts are
rich in chemistry but it is sometimes difficult to get what you want done easily
without the true programming power of variables, do-loops, if-statements,
etc.

In addition to this section a good place to start learning Hcl scripts is the
test.scr script that is explained and described in Chapter 10 of the Refer-
ence manual.

Reactive Collision of Two Molecules

This example illustrates a potential process for studying chemical reactions.
HyperChem’s molecular dynamics (MD) calculations use forces computed
by any of the basic computation methods - molecular mechanics, semi-empir-
ical or ab initio quantum mechanics. When the forces are computed by a
guantum mechanical method, bond breaking is quite straight-forward and an
MD trajectory can describe a reactive or non-reactive collision of two molec-
ular systems. The actual calculation of a rate constant for the chemical reac-
tion is much more complicated and involves performing the collision over
and over again with a Boltzman weighted set of initial conditions and averag-
ing over the results. A Tcl script could do this but here we just illustrate how
to set up a simple script so that any two molecules on the screen could be set
to collide with each other and you can see what happens. To reiterate, this will
show you only one of the many possible outcomes of collisions between the
two molecules. It nevertheless can be very informative.

This script assumes there are two molecules and two molecules only on the
screen. A collision is going to be initiated between a moving molecule 1 and
a stationary molecule 2. Molecule 1's center of mass is going to be set to
move in the direction of the center of mass of molecule 2.

Assign Target Position

The first thing we are going to do is to make the named selection POINT cor-
respond to molecule 2. POINT is a pre-named selection such that POINT can
be referred to by other parts of HyperChem as the center-of-mass of the selec-
tion. That is POINT can be both a name for a particular selection as well as
the center-of-mass of that selection. We select the atoms of molecule 2 and
assign them to POINT. We can select all the atoms of one molecule by having
the selection unit be molecules (menu item <Select/Molecules>) and select-
ing any atom of that molecule.

Type 1 (Hcl) Scripts 55

Examples

select-none

; start clean

selection-target molecules ; want to select all of molecule 2
select-atom 1,2 ; select atom 1 of molecule 2 => all atoms
name-selection POINT ; name the selection POINT

set-velocity POINT O ; make sure molecule 2 is stationary

select-none

; de-select

Assign Collision Velocities

select-atom 1,1
set-velocity POINT 200 ; veloc=200 in direction of POINT
select-none

The next step is to assign the velocities of the atoms of molecule 1 to be such
that the center of mass of molecule 1 is aimed at the center of mass of mole-
cule 2. We do this by selecting all of the atoms of molecule 1 and give them
a velocity in the direction of POINT. The scalar value of the assigned velocity
here is 200 Angstroms/picosecond. This is rather a high velocity of collision.
The center of mass of this second selection, directed at POINT, is the direc-
tion of each assigned velocity.

; select all atoms of molecule 1

; done

Wave Function Computation Parameters

Prior to initiating the collision we must set up the parameters for the resulting
guantum mechanical computations. In this case we use the CNDO semi-
empirical method but it might be any semi-empirical or ab initio method. It is
appropriate to try to accelerate the convergence and we do not want to per-
form a configuration interaction calculation since in that case no forces would
be calculated. We will be looking at a classical MD trajectory for the ground
state potential energy surface for these two molecules. Configuration Interac-
tion in HyperChem is for exploring excited states. A convergence of 0.01 in
usually sufficient and it should definitely converge in less than 100 interations
if it converges at all.

The final setting below is to request a UHF rather than an RHF calculation.
This is sometimes a controversial subject but RHF calculations do not have
the correct asymptotic behavior at long distances when bonds are being bro-
ken. UHF calculations sometimes have their own problems but allow a much
more generic approach for arbitrary chemical reactions. The UHF calcula-
tions usually allow bond-breaking to lead to the correct open-shell behavior
of intermediates and products, as compared to RHF calculations.

Chapter 6

calculation-method=semiempirical
semi-empirical-method=cndo
accelerate-scf-convergence=true
configuration-interaction=noci
excited-state=false
scf-convergence=0.01
max-iterations=100

uhf=true

The Collision

The last step is to initiate the molecular dynamics trajectory correctly. Most
of these parameters are not set below but have been set in the dialog box. The
important values are the step size and the length of the trajectory. If gradients
get very high a smaller step size may be necessary. A larger collision velocity
may also require smaller steps. It is essential to set dynamics-restart to be true
as this uses the velocities assigned above rather than attempts to equilibrate

Examples

faster than ab initio

why not

fast is good

no gradients with ci

could also study lowest state
0.1 to 0.0001 2

; better converge better than this

essential for bond breaking

the velocities, with random numbers, according to the temperature.

dynamics-restart=true
do-molecular-dynamics

This example can be run any time there are two molecules on the screen. In
some instances, it may be necessary to set the charge and multiplicity for
charged or open-shell systems. Try it by placing two methane molecules on

use velocities we have
let ‘er rip

the screen and see if you can forgHC,Hgin a collision? The example can

be expanded on in a great many ways. For example, one might like to see

molecular orbitals change during the collision.

One of the potential problems in watching molecular dynamics of chemical
reaction is that of the “standard model” of HyperChem which treats a mole-
cule as a connected graph. Overlapping spheres is the best way of viewing
chemical reactions because they display only the position of atoms and not
bonds that may no longer exist. Unfortunately, HyperChem uses the molecu-
lar graph to speed up the overlapping spheres rendering; it avoids working out
the intersection of spheres when there is no “bond”. Thus one may see ren-
dering artifacts sometimes when two atoms are near each other in a “product”
when the reactant molecular graph “says” that they are far apart. An interest-

ing script that you might wish to explore would be one that dynamically

recomputes the graph to reflect the changing bonds of the reaction. Because
of this issue, sometimes one “bonds everything” so that there are no artifacts
in a spheres rendering; quantum mechanical calculations, of course, pay no

attention to “bonds” but only care about the position of atoms. Bonds are

Type 1 (Hcl) Scripts 57

Examples

something to be derived from the results of the such quantum mechanical cal-
culations.

Building and Optimizing C60

The molecule g continues to be of great interest to chemists. The power of
HyperChem’s model builder is illustrated by its capability for building the
correct 3D structure of the molecule from a simple drawing of its 2D molec-
ular graph. This can be accomplished without any need for a script if you sim-
ply draw the molecular graph using a mouse. This example, however, creates
Cgspousing a script as an illustration of the general scripting capability and of
the process that one uses in a script to create arbitrary molecular structures.
In combination, for example, with Tcl and a Tk GUI it would certainly be
possible to add to HyperChem, yourself, the template building capabilities
that are the only building capabilities that many other molecular modeling
programs contain. That is, the HyperChem model builder has a richness that
makes possible many other molecule creation procedures.

Setup
The first part of this and any other script should set up the appropriate HSV
environment for the script. Here, this includes options for the model builder,
for the rendering and for the optimization that comes later. It is particularly
important to note that one should draw with explicit hydrogens (hydrogens
are not added unless they are explicitly drawn). This means that for interme-
diate structures used to build up tgyQhe model builder will not add inap-
propriate intermediate hydrogens to the dangling valencies.
file-needs-saved no ; no user intervention - new
menu-file-new ; clean slate for new
render-method sticks ; use sticks for drawing
calculation-method molecular-mechanics ; for later optimization
molecular-mechanics-method mm+ ; universal method
selection-target atoms ; select individual atoms
show-multiple-bonds yes ; lets see aromatic bonds
allow-ions yes ; valence of 4 for S
explicit-hydrogens yes ; build won’t add wrong hydrogens
multiple-selections yes ; going to select group

58 Chapter 6

Examples

Drawing the First Pair of Atoms

To draw a molecule, one usagate-atomnto place an atom, of a specified
atomic number, down onto the workspace. This script command places all
atoms at the origin and the fact that two atoms may have the same coordinates
is not particularly important here as their final positions will be chosen by the
model builder, which cares here only about the graph (what is bonded to
what!) not the arbitrary initial coordinates. If the coordinates were to be
important because, say, the model builder was not to be used, then any atom
could be translated (translate-selection) to some arbitrary Cartesian coordi-
nates.

Once, for example, the first two atoms are placed onto the workspace, a bond
is placed between them with the script commaettbond The order of the
arguments is atom and molecule of the first atom and then atom and molecule
of the second atom. In this case, the two atoms are both numbered 1 but in
molecules 1 and 2. The two atoms are in separate molegntiéthe bond is
drawn, because they are not part of the same connected molecular graph
which the bonds define.

;build first bonded pair of atoms

create-atom 6
create—-atom 6
set-bond 1 1

12

; place C at origin
; place 2nd C at origin
a ; create aromatic bond between

menu-build-model-build ; build 3D structure

Finish First Level Pentagon

create-atom 6
set-bond 2 1

12

The following script code then creates the remaining three atoms of the first
pentagon, building the structure (applying the model builder) as we go along.
It is not really necessary to apply the model builder at every step. Finally the
ring closing bond is applied and the atoms are all colored red. The top and bot-
tom pentagons will be colored red just to distinguish them as we rotate the
final structure. HyperChem generally uses a “select then operate” algorithm
where you first select a subset of atoms of the molecular system, apply some
operation to this subset, and then de-select or not for the next operation. The
operation here is one of many possible ones that could be applied to a selec-
tion. Specifically it is theolor-selectioroperation.

; create the remaining atoms
a

Type 1 (Hcl) Scripts 59

Examples

menu-build-model-build
create-atom 6

set-bond 31 1 2 a
menu-build-model-build
create-atom 6

set-bond 4 1 1 2 a
menu-build-model-build
set-bond 51 11 a
menu-build-model-build
select-atom 1 1
select-atom 2 1
select-atom 3 1
select-atom 4 1
select-atom 5 1
color-selection red
select-none

Build Remaining Layers

; set ring-closure bond

; select each of the five atoms

; color them red
; de-select everything

The following code is repetitive and just adds the remaining 55 atoms accord-
ing to the correct graph, building as it goes along.

create-atom 6

set-bond 1 1 1 2 a
menu-build-model-build
create-atom 6

set-bond 2 1 1 2 a
menu-build-model-build
create-atom 6

set-bond 31 1 2 a
menu-build-model-build
create-atom 6

set-bond 4 1 1 2 a
menu-build-model-build
create-atom 6

set-bond 51 1 2 a
menu-build-model-build
create-atom 6

set-bond 6 1 1 2 a
menu-build-model-build
create-atom 6

set-bond 6 1 1 2 a
menu-build-model-build

; build second tier

; build third tier

60 Chapter 6

create-atom 6

set-bond 71 1 2 a
menu-build-model-build
create-atom 6

set-bond 71 1 2 a
menu-build-model-build
create-atom 6

set-bond 8 1 1 2 a
menu-build-model-build
create-atom 6

set-bond 8 1 1 2 a
menu-build-model-build
create-atom 6

set-bond 91 1 2 a
menu-build-model-build
create-atom 6

set-bond 91 1 2 a
menu-build-model-build
create-atom 6

set-bond 10 1 1 2 a
menu-build-model-build
create-atom 6

set-bond 10 1 1 2 a
menu-build-model-build
set-bond 11 1 19 1 a

set-bond 12 1 14 1 a
set-bond 13 1 16 1 a
set-bond 151 18 1 a
set-bond 17 1 20 1 a
create-atom 6
set-bond 11 1 1 2 a
create-atom 6
set-bond 12 1 1 2 a
create-atom 6
set-bond 13 1 1 2 a
create-atom 6
set-bond 14 1 1 2 a
create-atom 6
set-bond 151 1 2 a
create-atom 6
set-bond 16 1 1 2 a
create-atom 6
set-bond 17 1 1 2 a

’

build fourth tier

Examples

Type 1 (Hcl) Scripts

61

Examples

create-atom 6

set-bond 18 1 1 2 a
create-atom 6

set-bond 19 1 1 2 a
create-atom 6

set-bond 20 1 1 2 a
set-bond 21 1 22 1 a ; tier of five pentagons
set-bond 23 1 24 1 a
set-bond 25 1 26 1 a
set-bond 27 1 28 1 a
set-bond 29 1 30 1 a

menu-build-model-build
create-atom 6 ; fifth tier

set-bond 21 1 1 2 a
create-atom 6
set-bond 22 1 1 2 a
create-atom 6
set-bond 23 1 1 2 a
create-atom 6
set-bond 24 1 1 2 a
create-atom 6
set-bond 251 1 2 a
create-atom 6
set-bond 26 1 1 2 a
create-atom 6
set-bond 27 1 1 2 a
create-atom 6
set-bond 28 1 1 2 a
create-atom 6
set-bond 29 1 1 2 a
create-atom 6

set-bond 30 1 1 2 a
menu-build-model-build
set-bond 32 1 34 1 a

set-bond 33 1 36 1 a
set-bond 351 38 1 a
set-bond 37 1 40 1 a
set-bond 31 1 39 1 a
create-atom 6
set-bond 31 1 1 2 a
create-atom 6
set-bond 32 1 1 2 a
create-atom 6

62 Chapter 6

set-bond 33
create-atom
set-bond 34
create—-atom
set-bond 35
create—-atom
set-bond 36
create—-atom
set-bond 37
create—-atom
set-bond 38
create—-atom
set-bond 39
create—-atom
set-bond 40

a

menu-build-model-build

set-bond 41
set-bond 43
set-bond 45
set-bond 47
set-bond 49
Ccreate—-atom
set-bond 41
set-bond 49
Create—-atom
set-bond 42
set-bond 44
Ccreate—-atom
set-bond 43
set-bond 46
Create—-atom
set-bond 45
set-bond 48
create-atom
set-bond 47
set-bond 50

a

a

a
a
a
a

a

menu-build-model-build

create-atom
set-bond 51
create-atom
set-bond 52
create-atom
set-bond 53

1 12
6

1 12
6

1 12
6

1 12
6

1 12
6

1 12
6

1 12
6

1 12
1 421
1 441
1 461
1 481
1 501
6

1 12
1 511
6

1 12
1 521
6

1 12
1 531
6

1 12
1 541
6

1 12
1 551
6

1 12
6

1 12
6

1 12

Examples

Type 1 (Hcl) Scripts

63

Examples

create—-atom
set-bond 54
create—-atom
set-bond 55 1 1 2 a
menu-build-model-build
set-bond 56 1 57 1 a
set-bond 57 1 58 1 a
set-bond 58 1 59 1 a
a
a

o &
=
N
©

set-bond 59 1 60 1
set-bond 60 1 56 1
menu-build-model-build

Color Bottom and Rotate

We now color the bottom pentagon, switch to a solid rendering and rotate the
molecule to visualize the structure. Because Hcl scripts have no control struc-
tures we have to repeat ttatate-moleculescript command to get the effect

we want. A Tcl script would use a do-loop.

select-atom 56
select-atom 57
select-atom 58
select-atom 59
select-atom 60
color-selection red
select-none
render-method spheres
rotate-molecules x 5
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules

=R R e

KX X X X X X X X X X X X X XX
o o1 0o 0o 0o O O O O O OO O O OO

easier
rotate
rotate
rotate

to see 3D shape
around horizontal

by 5 degrees at time
until see whole

64 Chapter 6

Examples

rotate-molecules
rotate-molecules
rotate-molecules
rotate-molecules

XXX X
o 01 01 U1

Zoom Structure

We now switch back to a sticks structure and zoom in on the molecule for
effect. We see a perspective picture as we zoom.

render-method sticks

align-viewer z ; view molecule along z axis
front-clip 0O ; don’t let it get clipped
show-perspective true ; pretty perspective view
translate-view translate 1 Angstrom in Z
translate-view ; repeat according to taste
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view
translate-view

=

lcNeNeoNeoNeoNeoNeoNoNoNoNeoNolNolNoNoNolNoNoNoNolNoNol oo ool ol ele)
'oNeNeNeoNeNeoNeNeoNoNoNeNoNoNololNoNoNoNoNoNoNoNo ool ool elNeley
PR R R RPRRPRRPRRRPRPRRPRPRRERERRRRRRRRRRRRRR

Type 1 (Hcl) Scripts 65

Catalog of HSV’s and Direct Script Commands

translate-view 0 0 1
translate-view 0 0 -30 ; go back where we were
show-perspective false ; turn off for other renderings

Create an SGQ Molecule Inside G

Next we create an Snolecule and place it at the center inside tggs@uc-
ture. We switch back to a solid rendering and cut away the frorgyaicGhat

we can see the S@olecule inside. If the selection unit (target) is molecules
then selecting any atom of a molecule selects the whole molecule. }ie SO
built without affecting the g, by selecting a subset ($before building.

This performs an incremental build (an important capability of the model
builder) on only the selection (“select and operate”).

selection-target molecules ; select whole molecules
select-atom 1 1 ; select whole C60
color-selection violet ; color violet for variety
select-none ; OK I'm done

create-atom 16 ; create SO2 - Sulfur first
create-atom 8 ; then the Oxygen

set-bond 1 2 1 3 d ; double bonds

create-atom 8
set-bond 1 2 1 3 d

select-atom 1 2 ; select the S02 for a build
menu-build-model-build ; incremental build
select-none ; have good S0O2 now

render-method disks
selection-target atoms
front-clip 54

Optimize SO, inside Cavity

do-optimization

exit-script
Other scripts can be found on the HyperChem CD-ROM. You may wish to
explore them as a CDK learning tool. To complete this chapter, we catalog all
Hcl script commands.

Catalog of HSV’s and Direct Script Commands

What follows is an alphabetic listing of all HSMriablesand all directom-
mands Each entry contains an indication whether it is a variable or command
and for a variable whether it is a Readonly variable or a Read/Write variable.

66 Chapter 6

Catalog of HSV'’s and Direct Script Commands

For variables the next line describes the type of variable it is while for com-
mands the argument list is described. The third line of each entry gives a brief
description of the entry. These entries are the result of running the script com-
mand,print-variable-list which is the final arbiter of the complete list of

script commands. The list of menu activations is left off this list since they
can be inferred from HyperChem by just looking at its menus. Alternatively,
the menu activations are described in the HyperChem Reference Manual.

abinitio-buffer-size: Variable, Read/Write.

Type: integer in range (1 .. 32767).

Two electron integral buffer size.
abinitio-calculate-gradient: Variable, Read/Write.

Type: boolean.

Enable Ab Initio gradient calculation (Single Point only).
abinitio-cutoff: Variable, Read/Write.

Type: float in range ﬁO .. 1e+010).

Two electron integral cutoff.
abinitio-d-orbitals: Variable, Read/Write.

Type: boolean.)

Either five (False) or six (True).
abinitio-direct-scf: Variable, Read/Write.

Type: boolean.

Enable Ab Initio Direct SCF calculation.
abinitio-f-orbitals: Variable, Read/Write.

Type: boolean.

_ Either seven (False) or ten (True).)

abinitio-integral-format: Variable, Read/Write.

Tyﬁe: enum(raffenetti, regular).

_ Either regular or raffenetti. .

abinitio-integral-path: Variable, Read/Write.

Type: string.

Path for storing integrals.
abinitio-mo-initial-guess: Variable, Read/Write.)
. tT pea e)num(core-hamlltonlan, projected-huckel, projected-cndo,pro-
jected-indo).
ind Either core-hamiltonian, projected-huckel, projected-cndo, projected-
indo.
abinitio-mp2-correlation-energy: Variable, Read/Write.

Type: boolean.

Enable Ab Initio MP2 correlation energy.
abinitio-mp2-frozen-core: Variable, Read/Write.

Type: boolean.

Enable Ab Initio MP2 frozen core.
abinitio-scf-convergence: Variable, Read/Write.

T)c/:pe: float in range (O .. 100).

SCF Convergence for Ab Initio.
abinitio-use-ghost-atoms: Variable, Read/Write.

Type: boolean.

Include or ignore ghost atoms.)
accelerate-scf-convergence: Variable, Read/Write.

Type: boolean.

Whether to use DIIS procedure.
add-amino-acid: Command.

Arg list: string.])]

String-1 gives the name of an amino acid residue to add to the system.

Type 1 (Hcl) Scripts 67

Catalog of HSV’s and Direct Script Commands

add-nucleic-acid: Command.
Arg list: string.)
) Strln?-l names the nucleotide to add to the current system.
align-molecule: Command.
Arg list: .
_ Align the inertial axes of the molecular system.
align-viewer: Command.
Arg list: .)) _ o)
Align the viewer's line-of-sight with the indicated axis or LINE.
allow-ions: Variable, Read/Write.
Type: boolean.
Whether to allow excess valence on atoms.
alpha-orbital-occupancy: Variable, Read/Write.
T Rle: vector of float.)
(|§/ umber of electrons in the i-th MO,
alpha-scf-eigenvector: Variable, Read/Write.
Type: vector of float-list.
_ (|§/C0eff|0|en_ts for the i-th MO.
amino-alpha-helix: Command.
AI’%“SIZ (void).) _) _
. Subsequent additions of amino acid residues are to use alpha-helix tor-
sions.
amino-beta-sheet: Command.
Ar%hst: (void).] _)
. Subsequent additions of amino acid residues are to use beta-sheet tor-
sions.
amino-isomer: Variable, Read/Write.
Type: enum(l, d).
“Whether amino acids are | or d.
amino-omega: Variable, Read/Write.
T%pe: float angle in range (-360 .. 360).
_The Omega amino acid backbone angle.
amino-phi: Variable, Read/Write.
Ter: float angle in range (-360 .. 360).
_The Phi amino acid backbone angle.
amino-psi: Variable, Read/Write.
Type: float angle in rangt(e (-360 .. 360).
~ The Psi amino acid backbone angle.
animate-vibrations: Variable, Read/Write.
Type: boolean. _ o
Whether or not to animate vibrations.
append-dynamics-average: Command.
A[jg list: strmg.) .]
Add a named selection to dynamics average gathering.
append-dynamics-graph: Command.
A(rjg list: strmg.) .)
Add a named selection to dynamics graph display.
append-omsgs-to-file: Command.
Arg list: string.) _
‘String-1 gives the name of a file to which 0-msgs are to be appended.
assign-basisset: Command.
rg list: string.)
Assign a basis set to a selection or system.
atom-basisset: Variable, Read/Write.
Type: array of string. o)
(iat, imol) The basis set of atom iat in molecule imol.
atom-charge: Variable, Read/Write.
Type: array of float.

Chapter 6

Catalog of HSV'’s and Direct Script Commands

(iat, imol) The charge of atom iat in molecule imol.
atom-color: Variable, Read/Write.

Type: array of .

(iat, ImOQ/ he current color of the atom.
atom-count: Variable, Readonly.

Type: vector of integer.

(imol) The number of atoms in molecule imol.
atom-extra-basisset: Variable, Read/Write.

Type: array of string, float.

(iat, imol) The basis set of atom iat in molecule imol.
atom-info: Variable, Readonly.

Type: (unknown).

Funny composite to support backends.
atom-label-text: Variable, Readonly.

Type: array of string.

(iat, imol) RO. The text of the current atom label.
atom-labels: Variable, Read/Write.)

'Ié/p_e: enum(None, Symbol, Name, Number, Type, Charge, Mass, Basis-
Set, Chirality).

Label for atoms.
atom-mass: Variable, Read/Write.

Type: arra¥ of float. o _

(iat, |moI{/ he mass of atom iat in molecule imol.
atom-name: Variable, Read/Write.

Type: array of string.

(iat, imcip he name of atom iat in molecule imol.
atom-type: Variable, Read/Write.

Type: array of string.

(iat, imol) The type of atom iat in molecule imol.
atomic-number: Variable, Read/Write.

Type: array of integer.

(iat, imol) The atomic number of atom iat in molecule imol.
atomic-symbol: Variable, Readonly.

Type: array of string.

(iat, imol) The element symbol of the atom.
back-clip: Variable, Read/Write.

Type: float.

Set back clipping plane.)
backend-active: Variable, Read/Write.

Type: boolean.

Whether current channel is an active backend.
backend-communications: Variable, Read/Write.

Type: enum(Local, Remote).

Whether to compute on local or remote host.
backend-host-name: Variable, Read/Write.

Ter: string.

The name of remote host for backend communications.
backend-process-count: Variable, Read/Write.

T%pe: integer in range (1 .. 32).

The number of processes to run.
backend-user-id: Variable, Read/Write.

Ter: string. o

The user id to use on the remote host for backend communications.
backend-user-password: Variable, Read/Write.

T%pe: string. .

. ;r e password for user id to use on the remote host for backend commu-

nications.
balls-highlighted: Variable, Read/Write.

Type 1 (Hcl) Scripts 69

Catalog of HSV’s and Direct Script Commands

Type: boolean. . o

Balls and Balls-and-Cylinders should be highlighted when shaded.
balls-radius-ratio: Variable, Read/Write.

Type: float in range (O .. 1).)

Size of the Balls relative to the maximum value.
balls-shaded: Variable, Read/Write.

Type: boolean. .

Balls and Balls-and-Cylinders should be shaded.
basisset-count: Variable, Readonly.

Type: integer.]]]

Number of coefficients required to describe a molecular orbital.
bend-enerﬂy: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).

Results from backend computation.
beta-orbital-occupancy: Variable, Read/Write.

T Rle: vector of float.)

(|§/ umber of electrons in the i-th MO.
beta-scf-eigenvector: Variable, Read/Write.
Type: vector of float-list.
éyCoefﬁuentS for the i-th MO.
bond-color: Variable, Read/Write.)
Wh'thpe: enum(ByElement, Black, Blue, Green, Cyan, Red, Violet, Yellow,

ite).

The color used for drawing atoms and bonds.
bond-spacing-display-ratio: Variable, Read/Write.

Type: float in range (O .. 1).

Bond spacing display ratio.
builder-enforces-stereo: Variable, Read/Write.

Type: boolean.] o o
ot Whether the model builder implicitly enforces any existing stereochem-
istry.
calculation-method: Variable, Read/Write. . N

Type: enumﬁMoIecuIarMech_anlcs, SemiEmpirical, Ablnitio).

Whether molecular mechanics, semi-empirical, or ab initio.
cancel-menu: Variable, Read/Write.

Type: boolean.)

Whether the cancel menu is up, or the normal one.
cancel-notify: Command.

Arg list: string.

String-1 names a variable to stop watching.
change-stereochem: Command.

Arg list: integer, integer.) o

Immediately change the stereochemistry about (iat, imol).
change-user-menuitem: Command.

Arg list: integer, string, Stl’ll’(]jg.) _ N
it Change the text and procedure associated with the specified user Menu-

em.

chirality: Variable, Read/Write.

Type: array of string.) o

(iat, imol) A, R, S, or ?, for achiral, R, S, or unknown chirality.
ci-criterion: Variable, Read/Write.

Type: enum(Energy, Orbital).

One of: energy, orbital.
ci-excitation-energy: Variable, Read/Write.

Type: float in range (0 .. 10000). o

~ When u—cntenonzener?y, maximum excitation energy.

ci-occupied-orbitals: Variable, Read/Write.

Type: integer in range (0 .. 32767).

Chapter 6

Catalog of HSV'’s and Direct Script Commands

~ When ci-criterion=orbital, count of occupied orbitals included.
ci-unoccupied-orbitals: Variable, Read/Write.
Type: integer in range (O .. 327672. . o
~ When ci-criterion=orbital, count of unoccupied orbitals included.
clip-cursor: Variable, Read/Write.
Type: float in range (O .. 1000).
_ Select Z axis clip cursor tool.
clip-icon-step: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select clip step.
color-element: Command.
Arg list: integer, enum(). _
Element Int-1 gets color String-2 as its default color.
color-selection: Command.
Arg list: string. .
String-1 names a color for the current selection.
compile-script-file: Command.
Arg list: string, string. _
Compile file strlnlg-l, writing result to string-2
configuration: Variable, Read/Write.
er: integer.])
The current UV configuration of the system.
configuration-interaction: Variable, Read/Write.
ype: enum(NoCl, SinglyExcited, Microstate).
One of: no-ci, singly-excited, microstate.
connectivity-in-pdb-file: Variable, Read/Write.
Type: boolean. o) .]
Whether connectivity information is to be included in a PDB file.
constrain-bond-angle: Command.
Arg list: float angle in range (-360 .. 360).
Float-1 gives the angle constraint for the three currently selected atoms.
constrain-bond-down: Command.
Arg list: integer, integer, integer, integer.)
Constrain the bond from (iatI, imol1) to (iat2, imo2) to be down.
constrain-bond-length: Command.
Arg list: float in range (0 .. 100).
Float-1 gives the length constraint for the two currently selected atoms.
constrain-bond-torsion: Command.
Arg list: float angle in range (-360 .. 360).
Float-1 gives the torsion constraint for the four currently selected atoms.
constrain-bond-up: Command.)
Arg list: integer, integer, |r_1te(1;e_r, integer.)
Constrain the bond from (iatI, imoll) to (iat2, imo2) to be up.
constrain-change-stereo: Command.
Arg list: integer, integer.)
Constrain atom (iat, imol) to change the current stereochemistry.
constrain-fix-stereo: Command.
Arg list: integer, integer. _
Constrain atom (iat, imol) to enforce the current stereochemistry.
constrain-geometry: Command.
Arg list: string.]
‘ String-1 describes the geometry constraint around the currently selected
atom.
coordinates: Variable, Read/Write.
Type: array of float, float, float. o]
(iat, imol) The x, y, and z coordinates of atom iat in molecule imol.
coordination: Variable, Readonly.
Type: array of integer.

Type 1 (Hcl) Scripts 71

Catalog of HSV’s and Direct Script Commands

(iat, imol) The coordination number for the specified atom.
cpk-max-double-buffer-atoms: Variable, Read/Write.
Type: integer in rang%e (0..2147483647).]
aximum number of double buffered atoms in cpk rendering mode.
create-atom: Command.
Arg list: integer in range (0 .. 103).
Create a new atom at the origin with atomic number nAtno.
current-file-name: Variable, Readonly.
Tﬁpe: string.]
The name of the current file.
custom-title: Variable, Read/Write.
Type: Stl’ll’_]?.)))
Custom Title string, append string to title.
cutoff-inner-radius: Variable, Read/Write.
Ter:.ﬂoat inrange (0 .. 1e+010).)
The distance (in Angstroms) to begin a switched cutoff.
cutoff-outer-radius: Variable, Read/Write.
T?;pe:_ﬂoat in range (0 .. 1e+010). _)
The distance (in Angstroms) at which nonbonded interactions become
zero.
cutoff-type: Variable, Read/Write.
TYpe: enum(None, Switched, Shifted).))
Electrostatic cutoff to apply to molecular mechanics calculations.
cycle-atom-stereo: Command.
A&g list: integer, integer. o
Advance the stereo constraint about atom (iat, imol).
cycle-bond-stereo: Command.]
A&g list: integer, integer, integer, integer.) _) _
_Advance the stereo constraint along the bond (iat1, imol1)--(iat2, imol2).
cylinders-color-by-element: Variable, Read/Write.
Type: boolean.
Color Cylinders using element colors.
cylinders-width-ratio: Variable, Read/Write.
Type: float in range (0 .. 1).
Width of the Cylinders relative to the maximum value.
d-orbitals-on-second-row: Variable, Read/Write.
Type: boolean.
Include D orbitals on second row.
declare-integer: Command.
Arg list: string.
Declare a new integer variable.
declare-string: Command.
Arg list; string.
Declare a new integer variable.
default-element: Variable, Read/Write.
Ter: integer in range (0 .. 103). _)
The atomic number of the default element for drawing operations.
delete-atom: Command.
Argi list: integer, integer.
Delete the specified atom.
delete-file: Command.
Arg list: string.
filename to be deleted.
delete-named-selection: Command.
Arg list: string.
Remove the named selection String-1 from the list of named selections.
delete-selected-atoms: Command.
Arg list: (void).

Chapter 6

Catalog of HSV'’s and Direct Script Commands

_ Delete the currently selected atoms.
dipole-moment: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
~ Dipole moment.) _
dipole-moment-components: Variable, Read/Write.
Type: float, float, float.
Dipole moment components.
do-langevin-dynamics: Command.
Arg list: (void).])
Perform a Langevin dynamics computation on the system.
do-molecular-dynamics: Command.
Arg list: (void).))
Perform a molecular d(}/namlcs computation on the system.
do-monte-carlo;: Command.
Arg list: (void).)
Perform a Monte Carlo computation on the system.
do-o’gtlm!zatmn; Command.
rg list: (void). o
Perform a structure optimization on the system.
do-gm-calculation: Variable, Read/Write.
ype: boolean.])
For smgr!e—pomt QM calculations, whether to re-compute wave function.
do-gm-graph: Variable, Read/Write.
ype: boolean.)
For single-point QM calculations, to graph some data.
do-gm-isosurface: Variable, Read/Write.
ype: boolean.))
For single-point QM calculations, to generate iso-surface of results.
do-single-point: Command.
Arg list: (void).))
Perform a smqle-_pomt computation on the system.
do-vibrational-analysis: Command.
Arg list: (void).]]
Perform a vibrational analysis computation on the system.
dot-surface-angle: Variable, Read/Write.
Type: float angle in range (-90 .. 90).
Dot surface angle.] .
double-buffered-display: Variable, Read/Write.
Type: boolean. .
Whether display operations are double-buffered.
dynamics-average-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Computation results from dynamics run.)
dynamics-bath-relaxation-time: Variable, Read/Write.
Type: float in range (0 .. 1e+010).
Bath relaxation time for dynamics. _
dynamics-collection-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
Dynamics data collection interval.)
dynamics-constant-temp: Variable, Read/Write.
Type: boolean.] o)
Whether to keep temperature fixed at dynamics-simulation-temp.
dynamics-cool-time: Variable, Read/Write.
Type: float in range (0 .. 1e+010).)))
G ITtIme taken to change from dynamics-simulation-temp to dynamics-
ina-temp. . :
dynamics-final-temp: Variable, Read/Write.
Type: float in range (0 .. 1e+010).

Type 1 (Hcl) Scripts 73

Catalog of HSV’s and Direct Script Commands

Temperature to cool back to when annealing.
dynamics-friction-coefficient: Variable, Read/\Write.

Type: float in range (0 .. 1000000).)

Friction coefficient for Langevin dynamics.
dynamics-heat-time: Variable, Read/Write.

Type: float in range (0 .. 1e+010). . o
i '{lme taken to change from dynamics-starting-temp -> dynamics-simula-
ion-temp.
dynamics-info-elapsed-time: Variable, Readonly.

Type: float in rar:jge (0 .. 1e+010).

Elapsed time in dynamics run.
dynamics-info-kinetic-energy: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).

Computation results from dynamics run.
dynamics-info-last-update: Variable, Readonly.

Type: boolean. _

Last update from dynamics run..
dynamics-info-potential -energg: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).

Computation results from dynamics run.
dynamics-info-temperature: Variable, Readonly.

Type: float in range (0 .. 1e+010).

Computation results from dynamics run.
dynamics-info-total-energy: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).

Computation results from dynamics run.
dynamics-playback: Variable, Read/Write.

Type: enum(none, playback, record).

Playback a recorded dynamics run.
dynamics-playback-end: Variable, Read/Write.

Type: integer in range (0 .. 32767).

End playback of recorded dynamics run.
dynamics-playback-period: Variable, Read/Write.

Type: Integer in range (1 .. 32767).

Dynamics playback interval.]
dynamics-playback-start: Variable, Read/Write.

Type: integer in range (0 .. 32767).

Start playback of recorded dalnar_nlcs run.
dynamics-restart: Variable, Read/Write.

Type: boolean.

se saved velocities.)

dynamics-run-time: Variable, Read/Write.

Type: float in range (0 .. 1e+010). .

Total integration time at dynamics-simulation-temp.
dynamics-seed: Variable, Read/Write.

Type: integer in range (-2147483648 .. 2147483647).

Seed for dynamics initialization random number generator.
dynamics-simulation-temp: Variable, Read/Write.

Type: float in range (O .. 1e+010).

High temperature for the dynamics run.)
dynamics-snapshot-filename: Variable, Read/Write.

Type: string.)

ame file of to store dynamics run.)

dynamics-snapshot-period: Variable, Read/Write.

Type: integer in range (1 .. 32767).

Set recording interval of dynamics run.
dynamics-starting-temp: Variable, Read/Write.

Type: float in range (0 .. 1e+010).

74 Chapter 6

Catalog of HSV'’s and Direct Script Commands

Starting temperature for the dynamics run.
dynamics-temp-step: Variable, Read/Write.

Type: float in range (0 .. 1e+010).

Step size (K) by which temperature is changed.
dynamics-time-step: Variable, Read/Write.

Type: float in range (O .. 1e+010).

Size of the step for integration.
error: Variable, Read/Write.

Tﬁpe: string.

The current error.
errors-are-not-omsgs: Command.

Arg list: (void). _

Specifies that error messages are to appear in message boxes.
errors-are-omsgs: Command.

Arg list: (void).)

Specifies that error messages should be treated like 0-msgs.
estatic-energy: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).

Results from backend computation.
excited-state: Variable, Read/Write.

Type: boolean.

False for lowest state, true for next-lowest state.
execute-client: Command.

Arg list: string.

Run a client application.
execute-hyperchem-client: Command.

Arg list: string.) .
ch Run a client application. App can reliably connect to instance of Hyper-

em.

execute-string: Command.

Arg list: string.

_ Execute the strirgjg variable as a script.

exit-script: Command.

Arg list: (void). _

Exit the current script.]
explicit-hydrogens: Variable, Read/Write.

Type: boolean. o

Whether hydrogens are to be drawn explicitly.
export-dipole: Variable, Read/Write.

Type: boolean. .]

Whether or not to export dipole moment data to .EXT file.
export-ir: Variable, Read/Write.

Type: boolean.

Whether or not to export IR data to .EXT file.
export-orbitals: Variable, Read/Write.

Type: boolean.

Whether or not to export orbital data to .EXT file.
export-property-file: Command.

Arg list: string.. .

Writes properties to the named file.
export-uv: Variable, Read/Write.

Type: boolean.]

Whether or not to export UV data to .EXT file.
factory-settings: Command.

Arg list: (void).

Reset chem to its out-of-the-box state.
file-diff-message: Command. _

Arg list: string, string, string, string.

Type 1 (Hcl) Scripts 75

Catalog of HSV’s and Direct Script Commands

~ Compare filel to file2; if they are the same say string3, else say string4.
file-format: Variable, Read/Write.
Type: string.
~ The molecule file format. _
file-needs-saved: Variable, Read/Write.
Type: boolean.
Whether the current system needs to be saved.
front-clip: Variable, Read/Write.
Type: float.
Set front clipping plane.
global-inhibit-redisplay: Variable, Readonly.
Type: boolean. o
Whether redisplay of the system is inhibited (readonly)
graph-beta: Variable, Read/Write.
Type: boolean. . _ .
If true and UHF, graph beta-spin orbitals instead of alpha.
graph-contour-increment: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
Increment between contour lines. .
graph-contour-increment-other: Variable, Read/Write.
Type: boolean.]
Whether to use graph-increment-other (true) or use defaults (false).
graph-contour-levels: Variable, Read/Write.
Txpe: integer in range (1 .. 32767).
The number of contour levels to plot.
graph-contour-start: Variable, Read/Write.
Type: float in range (-1e+010 .. 1e+010).
alue for first contour line, _
graph-contour-start-other: Variable, Read/Write.
Type: boolean.
Whether to use graph-contour-start (true) or use defaults (false).
graph-data-row: Variable, Readonly.
Type: vector of float-list.
i) The values on the i-th row of graph data.
graph-data-type: Variable, Read/Write.] .)
d T %e: enum(electrostatic, charge-density, orbital, orbital-squared, spin-
ensity).
The type of wavefunction data to plot.
graph-horizontal-grid-size: Variable, Read/Write.
"{lype: integer in range (2 .. 8192).) o
umber of data grid points for plotting in the horizontal direction.
graph-orbital-offset: Variable, Read/Write.
Type: mtegg—:-r in range (0 .. +Inf).
Display orbital offset.))
graph-orbital-selection-type: Variable, Read/Write.
Type: enum(lumo-plus, homo-minus, orbital-number).
Display orbital t{/)oe_. .
graph-plane-offset: Variable, Read/Write.
TyPe: float in range (-1e+010 .. 1e+010).
Oftset along viewer's Z axis of the(flan.e of the data to plot.
graph-vertical-grid-size: Variable, Read/Write.
'I'\'lype: integer in range (2 .. 8192).) o
~ Number of data grid points for plotting in the vertical direction.
grid-max-value: Variable, Readonly.
Tﬁpe_: float in range (-1e+010 .. 1e+010).
_ The isosurface maximum grid value.
grid-min-value: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).

76 Chapter 6

Catalog of HSV'’s and Direct Script Commands

The isosurface minimum grid value.
hbond-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Results from backend computation.
heat-of-formation: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
Heat of formation.
help: Command.
Arg list: string.
Give help on topic String-1.
hide-errors: Variable, Read/Write.
Type: boolean. N
~ Whether to display error messages on the screen (channel specific).
hide-messages: Variable, Read/Write.
Type: boolean.
Whether to disglay MESSAGE value on the screen.
hide-toolbar: Variable, Read/Write.
Type: boolean.
Command to toggle the toolbar.
hide-warnings: Variable, Read/Write.
Type: boolean.) B
Whether to display warning messages on the screen (channel specific).
huckel-constant: Variable, Read/Write.
Type: float in range (0 .. 10).
Extended Huckel constant.
huckel-scaling-factor: Variable, Read/Write.
Type: float in range (0 .. 200000).
Extended Huckel scaling factor.
huckel-weighted: Variable, Read/Write.
Type: boolean.
Extended Huckel weighting factor.
hydrogens-in-pdb-file: Variable, Read/Write.
Tﬁpe: boolean.))]
~ Should Hydrogens be written into a PDB file?
ignore-script-errors: Variable, Read/Write.
Type: boolean.
Whether script errors should be ignored, otherwise offer to abort on
errors.
image-color: Variable, Read/Write.
ype: boolean.
~ Save image in color?))
image-destination-clipboard: Variable, Read/Write.
ype: boolean. i]
~ Save image to the Windows clipboard?
image-destination-file: Variable, Read/Write.
ype: boolean.
Save image to a file?
image-file-bitmap: Variable, Read/Write.
ype: boolean.
~ Save in bitmap format?)
|magre—f|le—b|tmap GB: Variable, Read/Write.
ype: boolean.
Save in bitmap-RGB format?
image-file-metafile: Variable, Read/Write.
ype: boolean.
Save in Windows metafile format?
image-include-cursor: Variable, Read/Write.
ype: boolean.

Type 1 (Hcl) Scripts 77

Catalog of HSV’s and Direct Script Commands

_Include cursor in image? .
image-source-window: Variable, Read/Write.
ype: enum(TopLevel, Workspace, HyperChem, FullScreen).

~ Extent of image to capture.
import-dipole: Variable, Read/Write.

Type: boolean.] .
_ Whether or not to import dipole moment data from .EXT file.
import-ir: Variable, Read/Write.

Type: boolean.]
~ Whether or not to import IR data from .EXT file.
import-orbitals: Variable, Read/Write.

Type: boolean. _)
~ Whether or not to import orbital data from .EXT file.
import-property-file: Command.

Arg list: string.]
~ Reads properties from the named file.
import-uv: Variable, Read/Write.

Type: boolean.)
~ Whether or not to import UV data from .EXT file.
info-access: Variable, Readonly.

Type: string.))
~ (RO) Access (R, W, RW) for info-variable-target.
info-enume-id-of: Variable, Readonly.

Type: string.) _)
~ (RO) Binary id of info-enum-target value for info-variable-target.
info-enume-list: Variable, Readonly.

Type: string.)))

) (RO) If enumerated type, list of enumerated values for info-variable-tar-

info-factory-setting: Variable, Readonly.
Type: string.))]
| O? factory setting value for info-variable-target.
info-id-of: Variable, Readonly.
Type: integer.)
~ (RO) Binary id of info-variable-target.
info-type-of: Variable, Readonly.
lzpe: string. .
~ (RO) Type of info-variable-target.
info-type-of-element: Variable, Readonly.
Igpe: string.)
~ (RO) If info-type-of is array or vector, type of elements.
info-variable-target: Variable, Read/Write.
Type: string.
_Variable for which info is required.
inhibit-redisplay: Variable, Read/Write.
Type: boolean. o
_ Whether redisplay of the system is inhibited by current channel.
ir-animate-amplitude: Variable, Read/Write.
Tﬁpe:_ﬂoat in range (O .. 10). o]
i 'IEOe 1d(%tance in angstroms to move the fastest atom during vib anima-
ions(0..
ir-animate-cycles: Variable, Read/Write.
T%pe: integer in range SO . +Inf). _
~ The number of cycles (length of time) to animate. 0 means forever.
ir-animate-steps: Variable, Read/Write.
Ter: integer in range (3 .. +Inf). o
~ The number of steps to use in animating vibrations (3 -- BIG)
ir-band-count: Variable, Read/Write.

Chapter 6

Catalog of HSV'’s and Direct Script Commands

Type: integer.
) umber of ir bands.)
ir-frequency: Variable, Read/Write.

T 'g_e: vector of float.
o (K requency of the i-th IR band.
ir-intensity: Variable, Read/Write.

T Fe: vector of float.
o (S/ ntensity of the i-th IR band. _
ir-intensity-components: Variable, Read/Write.

T Fe: vector of float, float, float.]
) (|§/ ntensity components (x,y, and z) of the i-th IR band.
ir-normal-mode: Variable, Read/Write.

Type: vector of float-list. .
~ (i) Normal node. This is a vector holding X, y, and z for each atom.
is-extended-hydrogen: Variable, Readonly.

Type: array of boolean.
~_(iat, imol) RO. Is the atom an extended hydrogen?
|s—r|r_1|g—atom: Variable, Readonly.

'ype: array of boolean.)
~(iat, imol) RO. Is the atom in a ring? _
|sosurface-9rld-_step-3|ze: Variable, Read/Write.

T%pe_: float in range (0 .. 1e+010).
_ The isosurface grid stepsize.)
isosurface-hide-molecule: Variable, Read/Write.

Tﬁpe: boolean.,
_ Show only the isosurfaces.)
isosurface-map-function: Variable, Read/Write.

Type: boolean. o
_ Display a mapped function isosurface.)
isosurface-map-function-display-legend: Variable, Read/Write.

Type: boolean.]
~ Display the isosurface mapped function range legend.
isosurface-map-function-range: Variable, Read/Write.

Type: float, float.)
_ Set the isosurface mapped function range.
isosurface-mesh-quality: Variable, Read/\Write.

Type: enum(coarse, medium, fine).
_ Use coarse, medium or fine %nd settings.
isosurface-render-method: Variable, Read/Write.

Type: enum(wire-mesh, Jorgensen-Salem, lines, flat-surface, shaded-
surface, Gouraud-shaded-surface, translucent-surface).
~ The method used to render the isosurfaces.
isosurface-threshold: Variable, Read/Write.

Ter_: float in range (0 .. 1e+010).
~ The isosurface threshold value?]
isosurface-transparency-level: Variable, Read/Write.

Terg: float in range (O .. 1).
_ The isosurface level of transparency (0 = opaque, 1 = transparent)
isosurface-x-min: Variable, Read/Write.

Ter: float in range (571e+010 .. 1e+010).
~ The smallest x coordinate of the grid data.
isosurface-x-nodes: Variable, Read/Write.

T%pe: integer in range (2 .. 128).
~ The number of isosurface x nodes.
isosurface-y-min: Variable, Read/Write.

Ter: float in rangeé;1e+010 .. 1e+010).
~ The smallest y coordinate of the grid data.
isosurface-y-nodes: Variable, Read/Write.

Type 1 (Hcl) Scripts 79

Catalog of HSV’s and Direct Script Commands

Ter: integer in range (2 .. 128).
The number of isosurface y nodes.
isosurface-z-min: Variable, Read/Write.

T%pe: float in range (-1e+010 .. 1e+010).

The smallest z coordinate of the grid data.
isosurface-z-nodes: Variable, Read/Write.

Ter: integer in range (2 .. 128).

The number of isosurface z nodes.
keep-atom-charges: Variable, Read/Write.

Type: boolean.

Keep atom charges when switch calculation methods.
load-default-menu: Command.

Arg list: (void).

Load the Hyperchem default menu.
load-user-menu: Command.

Arg list: string.

Load user customized menu.
log-comment: Command.

Arg list: s.trm%..]

Write String-1 into the current lodfile.
max-iterations: Variable, Read/Write.

Type: integer in range (1 .. 32767).

aximum number of SCF iterations.

mechanics-data: Variable, Readonly.

Type: (unknown).

Funny composite to s_u%?ort backends.
mechanics-dielectric: Variable, Read/Write.

Type: enum(Constant, DistanceDependent), enum(Constant, Dis-
tanceDependent), enum(Script One), enum().

The method for calculating dielectric permittivity.
mechanics-dielectric-scale-factor: Variable, Read/Write.

Type: float, float, float, float.

Constant to multiply distance-dependent dielectric by.
mechanics-electrostatic-scale-factor: Variable, Read/Write.

Type: float, float, float, float.

Scale factor for 1-4 dielectric interactions.
mechanics-info: Variable, Readonly.

Type: (unknown).

Funny composite to support backends.
mechanics-mmp-electrostatics: Variable, Read/Write.

Type: .

TKe_type of electrostatic interaction to use in MM+ calculations.
mechanics-print-level: Variable, Read/Write.

Type: mteg%er inrange (0..9).

Print level for molecular mechanics.)
mechanics-van-der-waals-scale-factor: Variable, Read/Write.

Type: float, float, float, float.])

Scale factor for 1-4 van der Waals interactions.
merge-file: Command.

rg list: string.))

String-1 names the molecule file to be merged with the current system.
message: Variable, Read/Write.

Type: string.

stringl is an output message. .
molecular-mechanics-method: Variable, Read/Write.

Ter: enum(mm+, amber, bio+, opls).

The type of molecular mechanics method to perform.
molecule-count: Variable, Readonly.

80 Chapter 6

Catalog of HSV'’s and Direct Script Commands

Ter: integer.)
The number of molecules in the system.
moments-of-inertia: Variable, Readonly.

Type: boolean.

Return the moments of inertia of selected system.
monte-carlo-cool-steps: Variable, Read/Write.

Type: float in range (0 .. 1e+010). =~ _ .
. IStteps taken to change from dynamics-simulation-temp -> dynamics-
inal-temp.
monte—ca?rlo—heat-steps: Variable, Read/Write.

Type: float in range (0 .. 1e+010). .) .
lati Stteps taken to change from dynamics-starting-temp -> dynamics-simu-
ation-temp.
monte-carlo-info-acceptance-ratio: Variable, Readonly.

Type: float in range (0 .. 1).

Computation result from Monte Carlo run.
monte-carlo-max-delta: Variable, Read/Write.

Type: float in range (0 .. 1e+010).)

aximum allowed size of the displacement step in Angstroms.
monte-carlo-run-steps: Variable, Read/Write.

Type: float in range (0 .. 1e+010).)

Total number of steps at dynamics-simulation-temp.
mouse-mode: Variable, Read/Write. _))

Type:. enum(Drawm% Selecting, Rotating, ZRotating, Translating,
ZTranslating, Zooming, Clipping).

The function of the cursor in the drawing area.
mp2-energf?/: Variable, Readonlf/.

-I\ng)e: oat in range (-1e+010 .. 1e+010).

2 energy

multiple-selections: Variable, Read/Write.
Ype: boolean.)

Allow multiple selections.

multiplicity: Variable, Read/Write.
ype: integer in range (1 .. 6).

Spin multiplicity.
mutate-residue: Command.

Arg list: string.

Change selected residue into String-1.
name-selection: Command.

Arg list: string.

Name the current selection String-1.
named-selection-count: Variable, Readonly.

Tﬁpe: Integer.)

The number of named selections.
named-selection-name: Variable, Readonly.

Type: vector of string.)

(i) The name of the i-th named selection.
named-selection-value: Variable, Readonly.

Type: vector of float.

(i) The value of the i-th named selection (bond length, angle, etc).
negatives-color: Variable, Read/Write.
Wh_thpe: enum(ByElement, Black, Blue, Green, Cyan, Red, Violet, Yellow,

ite).

The color of the negatives.
neighbors: Variable, Readonly.

Type: array of (unknown). B

(iat, imol) The neighbor list for the specified atom.
no-source-refs-in-errors: Command.

Type 1 (Hcl) Scripts 81

Catalog of HSV’s and Direct Script Commands

Arg list: (void).
Controls presentation of filename, line number in error messages.
non-standard-pdb-names: Variable, Read/Write.
Type: boolean.
If true, then look for Ieﬁ&ustmed pdb element names .
nonbond-energy: Variable, Readonly.
Type: float in range (- 1e+010 .. 1e+010)
Results from backend computat|on
notify-on-update: Command
Arg list: string.
String-1 gives name of variable whose value-changes are desired.
not|f¥ -wit text Variable, Read/Write.
ype: boolean.
For DDE channels only. Are notifications to be text (otherwise binary).
nuclelc a-form: Command.
%hst (void).
sequent additions of nucleotides will use a-form torsion angles.
nuclelc aIpha Variable, Read/Write.
T)l/\?e float angle in range (-360 .. 360).
A alpha backbone torsion.
nucleic-b-form: Command.
Arg list: (void).
Subsequent additions of nucleotides will use b-form torsion angles.
nucleic-backwards: Variable, Read/Write.
Type: boolean.
Build backward DNA.
nucleic-beta: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA beta backbone torsion.
nucleic-chi: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA chi backbone torsion.
nucleic-delta: Variable, Read/Write.
T;ll\?e float angle in range (-360 .. 360).
delta backbone torsion.
nucleic-double-strand: Variable, Read/Write.
Type: boolean.
Build double strand DNA.
nucleic-epsilon: Variable, Read/Write.
T;ll\?e float angle in range (-360 .. 360).
A epsilon backbone torsion.
nucleic-gamma: Variable, Read/Write.
Type: float angle in range (-360 .. 360).
DNA gamma backbone torsion.
nucleic- sugar pucker: Variable, Read/Write.
Type: enum(2-endo, 3- endo)
Select sugar pucker of DNA.
nucle|c z-form: Command.
%Ilst (void).
sequent addltlons of nucleotides will use z-form torsion angles.
nuclelc zeta Variable, Read/Write.
T;'/\E)e float anile in range (-360 .. 360).
A zeta backbone torsion.
oms_? -file: Variable, Read/Write.
ype: string.
String is file to append omsgs.
omsgs-not-to-file: Command.

82 Chapter 6

Catalog of HSV'’s and Direct Script Commands

Arg list: (void).))
Directs that 0-msgs are not to be written to a file, but to a messagebox.
omsgs-to-file: Command.
rg list: string.)))
String-1 gives the name of the new file to which o-msgs are to be written.
one-line-arrays: Variable, Read/Write.
Type: boolean. .
Whether to emit arrays all on one line.
open-file: Command.
Arg list: string.]
_String-1 names the molecule file to be opened.
optim-algorithm: Variable, Read/Write. o
Type: enum(SteepestDescents, FletcherReeves, PolakRibiere, Newton-
Raphson, EigenvectorFollow). o
_The algorithm to use for structure optimizations.
optim-converged: Variable, Readonly.
Type: boolean.
“Whether optimization has converged.
optim-convergence: Variable, Read/Write.
Type: float in range (0 .. 100).
_Optimization gradient convergence.
optim-max-cycles: Variable, Read/Write.
Type: integer in ran%e 1 .. +Inf).
aximum number of optimization steps.
orbital-count: Variable, Read/Write.
Type: integer.
umber of molecular orbitals available.
parameter-set-changed: Variable, Read/Write.
Type: boolean.
Toggles the state of the backend parameters.
path: Variable, Read/Write.
Type: string.
Current directory.
pause-for: Command.
Arg list: integer in range (0 .. 32767).
"HyperChem pauses for Int-1 seconds.
periodic-boundaries: Variable, Read/Write.
Type: boolean. o N
‘Whether to use periodic boundary conditions.
periodic-box-size: Variable, Readonly.
Type: (unknown). o
Return the size of the periodic box.
pop-no-value: Command.
Arg list: string.
variable: pop stack, don't restore value.
pop-value: Command.
Arg list: string.
variable: Restore pushed value.
positives-color: Variable, Read/Write. .
Wh_t'l'zpe: enum(ByElement, Black, Blue, Green, Cyan, Red, Violet, Yellow,
ite).
_ The color of the positives.
print: Command.
Arg list: (void).
_ Print to default printer.
print-variable-list: Command.
Arg list: string.)))
Write a summary of the state variables to file String-1

Type 1 (Hcl) Scripts 83

Catalog of HSV’s and Direct Script Commands

printer-background-white: Variable, Read/Write.
Type: boolean.
Force printer background color to white.
push: Command.
Arg list: stnngL.
variable: Push copy of current value onto stack.
quantum-print-level: Variable, Read/Write.
Type: mtec%er inrange (0..9).
Print level for quantum mechanics.
guantum-total-charge: Variable, Read/Write.
Ter: integer in range (-32768 .. 32767).
The total charge of the quantum mechanical system.
guery-response-has-tag: Variable, Read/Write.
ype: boolean.
Do HSV responses have identifying tags?
quetx—va_lue: Command.
rg list: .) .
String-1 names the state variable whose value should be emitted as an o-
msg.
read-binary-script: Command.
Arg list: string.) o
String-1 names the compiled script file that should be read.
read-script: Command.
Arg list: string.
String-1 names the file that should be read as a command script.
read-tcl-script: Command.
Arg list: string. i
) Sttrlng-l names the file that should be read and executed as a Tcl/Tk
script.
remove-all-stereo-constraints: Command.
Arg list: (void).
Remove all stereo constraints.
remove-stereo-constraint: Command.
Arg list: integer, integer. o
Remove any stereo constraints from atom (iat, imol)
render-method: Variable, Read/Write. .)
Type: enum(sticks, balls, balls-and-cylinders, spheres, dots, sticks-and-

dOtSh] .
ow the system is to be displayed.
reorder-selections: Variable, Read/Write.

Tﬁpe: boolean.)

Should atoms in selections be reordered to make proper angles, etc.?
request: Command.

Arg list: string.

_Displays String-1 in a modeless dialog until the user click OK.
residue-charge: Variable, Readonly.

Type: array of float.)

éwes, imol) The net charge on the residue.
residue-coordinates: Variable, Readonly.

Type: array of float, float, float. .

_éwes, imol) The center-of-mass for the residue.
residue-count: Variable, Readonly.

Type: vector of integer.

imol) The number of residues in molecule imol.

residue-label-text: Variable, Readonly.

Type: array of stnn%]

_éwes, imol) Text of the label for the residue.
residue-labels: Variable, Read/Write.

Chapter 6

Catalog of HSV'’s and Direct Script Commands

TyBe: enum(None, Name, Sequence, NameSequence).
_Label for residues.
residue-name: Variable, Readonly.
Type: array of string.)
(ires, imol) The name of the residue.
restraint; Command.
Arg list: string, float, float.
(selection-name, value, force-constant)
restraint-tether: Command.
Arg list: .
(selection-name, [POINT]|x,y,z], force-constant)
revert-element-colors: Command.
Arg list: (void).))
Use default color scheme for displaying atoms.
rms-gradient: Variable, Readonly.
ype: float in ranEe (-1e+010 .. 1e+010).
Results from backend computation.
rotate-molecules: Command.
Arg list: .)
rotate-molecules (axis, angle)
rotate-viewer: Command.
Arg list: .)
rotate-viewer (axis, angle)
scf-atom-energy: Variable, Readonly.
T)é)e: float in range (-1e+010 .. 1e+010).
SCF atom ener%y.)
scf-binding-energy: Variable, Readonly.
Type: float in range (-1e+010 .. 1e+010).
SCF binding energy.)
scf-convergence: Variable, Read/Write.
Type: float in range (O .. 100&/'1)
Convergence required for SCF computations.
scf-core-energy: Variable, Readonly.
T)c/:pe: float'in range (-1e+010 .. 1e+010).
SCF core energy.
scf-electronic-energy: Variable, Readongl.
Type: float in range (-1e+010 .. 1e+010).
SCF electronic energ?/.)
scf-orbital-energy: Variable, Read/Write.
Type: vector of float. _
(|§/ igenvalues of the Fock matrix.
screen-refresh-period: Variable, Read/Write.
Type: integer in range (1 .. 32767).
“How frequently to update system on the screen.
script-menu-caption: Variable, Read/Write.
Type: vector of string.
_Caption for menu button. .
script-menu-checked: Variable, Read/Write.
Type: vector of boolean.
_If checked.) _
script-menu-command: Variable, Read/Write.
Type: vector of string.
~Command for menu button.)
script-menu-enabled: Variable, Read/Write.
Type: vector of boolean.
_If greyed.])]
script-menu-help-file: Variable, Read/Write.

Type 1 (Hcl) Scripts 85

Catalog of HSV’s and Direct Script Commands

Type: vector of string.
elp file for menu item.
script-menu-help-id: Variable, Read/Write.
Type: vector of integer.
Context id for help on button.
script-menu-in-use: Variable, Read/Write.
Type: vector of boolean.
_Is somebody claiming this menu item?
script-menu-message: Variable, Read/Write.
Type: vector of string.
_Status message. .
script-refs-in-errors: Variable, Read/Write.
Type: boolean.
Whether to include script file line numbers in errors.
select-atom: Command.
Arg? list: integer, integer.))
Selects atom int-1 in molecule int2. Honors selection-target.
select-name: Command.
Arg list: string. .)
String-1 specifies the name of a selection to become the current selection.
select-none: Command.
Arg list: (void).
Unselect all atoms.
select-residue: Command.
Arg list: inte_ger, integer. .) .)
Selects residue int-1 in molecule int-2, disregarding selection-target.
select-sphere: Variable, Read/Write.
Type: boolean.
Whether double-button dragging selects in a sphere or in a rectangle.
selected-atom: Variable, Readonly.
Type: vector of integer, integer.
(i) The atom and molecule indices of the i-th selected atom.
selected-atom-count: Variable, Readonly.
Txpe: integer.
The number of selected atoms.
selection-color: Variable, Read/Write. _
Wh'tT)Spe: enum(ThickLine, Black, Blue, Green, Cyan, Red, Violet, Yellow,
ite).
How to display the selection.
selection-target: Variable, Read/Write.
T%pe: enum(Molecules, Residues, Atoms).
The type of target for selection operations.
selection-value: Variable, Readonly.
Type: float. i
The value of the current selection ébon_d length, angle, etc).
semi-empirical-method: Variable, Read/Write.
T)g)e: enum(ExtendedHuckel, CNDO, INDO, MINDO3, MNDO, AM1,
PM3, ZINDO1, ZINDOS).)
The ty;t))e of semi-empirical computation to perform.
serial-number: Variable, Readonly.
T%pe: string.
The serial number of this copy of HyperChem, read-only.
set-atom-charge: Command.
Arg list: float in range (-100 .. 100).
Float-1 provides the charge for the currently selected atom(s).
set-atom-type: Command.
Arg list: string.
String-1 provides the type for the currently selected atom(s).

Chapter 6

Catalog of HSV'’s and Direct Script Commands

set-bond: Command.))

Arg list: integer, integer, !ntePer, integer, enum()).

Set bond between (iatl, imoll) and (1at2, imol2) to be bond type.
set—bond_—an?le: Command.

Arg list: float angle in range (0 .. 180).

Set the bond angle for the current selection.
set-bond-length: Command.

Arg list: float in range (0 .. 3200).)

Set the bond length for the current selection.
set-bond-torsion: Command.

Arg list: float angle in ran%e (-360 .. 360).

Set the torsion angle for the current selection.
set-velocity: Command.

Arg list: . _

Set the velocity for the selected atoms.
show-axes: Variable, Read/Write.

Type: boolean. o

Whether to display inertial axes.
show-dipoles: Variable, Read/Write.

Type: boolean.)

Whether to display dipole.]
show-hydrogen-bonds: Variable, Read/Write.

Type: boolean.)

Whether hydrogen bonds are displayed.
show-hydrogens: Variable, Read/Write.

Type: boolean.)

Whether Hydrogens are displayed.
show-isosurface: Variable, Read/Write.

Type: boolean. . .))

Whether an isosurface should be displayed, if one is available.
show-multiple-bonds: Variable, Read/Write.

Type: boolean.) o

Whether multiple bonds are drawn with multiple lines.
show-periodic-box: Variable, Read/Write.

Type: boolean. o o

Whether the periodic box is displayed when it exists.
show-perspective: Variable, Read/Write.

Type: boolean.)) _

Whether the system should be displayed in perspective.
show-ribbons: Variable, Read/Write.

Type: boolean.) o

Whether the system should be displayed with ribbons.
show-stereo: Variable, Read/Write.

Type: boolean.))

Whether the system should be displayed as a stereo pair.
show-stereochem-wedges: Variable, Read/Write.

Type: boolean.]])

Whether stereochemistry constraints get displayed on the screen.
show-vibrational-vectors: Variable, Read/Write.

Type: boolean.) o

Whether or not to display per-atom vibrational vectors.
solvate-system: Command.

Ar? list: (void). .]

Solvate current system using default box size.
solvate-system-in-this-box: Command.

Arg list: float, float, float.)]

The three Float args give the size of the box for solvation.

Type 1 (Hcl) Scripts 87

Catalog of HSV’s and Direct Script Commands

source-refs-in-errors: Command.

Arg list: (void).]])

Controls Presentatlon of filename, line number in error messages.
spheres-highlighted: Variable, Read/Write.

T)I/:Pe: boolean. o

CPK overlapping spheres should be highlighted when shaded.
spheres-shaded: Variable, Read/Write.

Type: boolean.

CPK overlapping spheres should be shaded.
start-log?lng: Command.

Arg list: string, boolean. _ . _

Begin append of_lo%glng computation results to file String-1.
status-message: Variable, Read/Write.

T%pe: string.

The text of the last status message.
sticks-width: Variable, Read/Write.

Type: integer in range (0 .. 25).

Sticks rendering width in pixels.
stop-logging: Command.

Arg list: (void). _

Don't log computation results any more.
stretch-energy: Variable, Readonly.

Type: float in ranae (-1e+010 .. 1e+010).

_Results from backend computation.

switch-to-user-menu: Command.

Arg list: (void).)

Change menu to the user customized menu.
toggle: Command.

Arg list: string. .

Invert value of boolean variable.
torsion-energy: Variable, Readonly.

Type: float in range (-1e+010 .. 1e+010).

Results from backend computation.
total—energﬁ/: Variable, Readon f

Type: float in range (-1e+010 .. 1e+010).

Results from backend computation.]
translate-merged-systems: Variable, Read/Write.

Tﬁpe: boolean. _

Should newly merged/pasted molecules be translated off to one side?
translate-selection: Command.

Arg list: float, float, float.

Translate the selection by (dx, dy, dz)
translate-view: Command.

Arg list: float, float, float.

Translate the view by (dx, dy, dz).)
translate-whole-molecules: Variable, Read/Write.

Type: boolean.]

Select translation of entire molecule.
uhf: Variable, Read/Write.

Type: boolean.)

Perform UHF(true) or RHF(false) calculation.
un-select-atom: Command.

Arg list: integer, integer.))

Un-selects atom int-1 in molecule int2. Honors selection-target.
un-select-residue: Command.

Arg list: integer, integer.))))

Un-selects residue int-1 in molecule int-2, disregarding selection-target.

88 Chapter 6

Catalog of HSV'’s and Direct Script Commands

unconstrain-bond-angle: Command.
Arg list: (void).)
Remove any angle constraint for the three currently selected atoms.
unconstrain-bond-length: Command.
Arg list: (void).)
Remove any constraints on two currently selected atoms.
unconstrain-bond-torsion: Command.
Arg list: (void).)
Remove any torsion constraint for the four currently selected atoms.
use-fast-translation: Variable, Read/Write.
Type: boolean.)
se bitmap for XY translations.
use-no-restraints: Command.
Arg list: ?vmd).)
Ignore all restraints.
use-parameter-set: Command.
rg list: string. . .
Use parameter set stringl for current molecular mechanics methods.
use-restraint: Command.
Arg list: string, boolean.
(selection-name, if-use)]
uv-band-count: Variable, Read/Write.
Tﬁpe: integer.
The total number of uv bands.)
uv-d_llpole-components: Variable, Read/Write.
'ype: vector of float-list. _
(i) The components of the dipole moment for the i-th state.
uv-energy: Variable, Read/Write.
Type: vector of float.
(i) The energy of the i-th uv band.
uv-oscillator-strength: Variable, Read/Write.
Type: vector of float.
(i) For the current state.
uv-spin: Variable, Read/Write.
'ype: vector of float.
(i) The total spin of the i-th state.
uv-total-dipole: Variable, Read/Write.
T El)_e: vector of float.) _
(|§/ he total dipole of the i-th excited state.
uv-transition-dipole: Variable, Read/Write.
Type: vector of float, float, float.)]
(i) The components of the transition dipole for the i-th state.
variable-changed: Command.
Arg list: string.)
Declare that the named variable has changed.
velocities: Variable, Read/Write.
Type: array of float, float, float. o
I(|at, imol) The x, y, and z velocity components of atom iat in molecule
mo

velocities-in-hin-file: Variable, Read/Write.

Type: boolean.

Should velocities be written into a hin file?
version: Variable, Readonly.

Ter: string.

The version number of HyperChem, read-only.
vibrational-mode: Variable, Read/\Write.

T%pe: integer.

The index of the current normal mode.

Type 1 (Hcl) Scripts 89

Catalog of HSV’s and Direct Script Commands

view-in-hin-file: Variable, Read/Write.
Tﬁpe: boolean.) o) o
Should view be written into a hin file? (useful for comparing hin files)
wall-eyed-stereo: Variable, Read/Write.
Type: boolean.
Wall eyed stereo.)
warning: Variable, Read/Write.
Txpe: string. _
The current warning. .
warning-type: Variable, Read/Write.
Type: enum#none, log, message).
Destination for warning messages.
warnings-are-not-omsgs: Command.
Arg list: (void).) _
Specifies that warning messages are to appear in message boxes.
warnings-are-omsgs: Command.
Arg list: (void). .]
~ Specifies that warning messages should be treated like o-msgs.
window-color: Variable, Read/Write.)
'I\')O%e: enum(Monochrome, Black, Blue, Green, Cyan, Red, Violet, Yel-
low, White).)
_ The background color for the window.
window-height: Variable, Read/Write.
Type: |nte%er.] o
eight of the HyperChem window in pixels.
window-width: Variable, Read/Write.
Type: integer. . o
_ Width of the HyperChem window in pixels.
write-atom-map: Command.
Arg list: string.
Writes a mapping of backend atom numbers to HyperChem (atom, mol-
ecule) pairs.
write-file: Command.
Arg list: string. o))
String-1 names the file into which the current system should be written.
X-y-rotation-cursor: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select X-Y axis rotation cursor tool.
X-y-rotation-icon-step: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select X-Y axis rotation step.)
x-y-translation-icon-step: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select X-Y translation step.)
z-rotation-cursor: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select Z axis rotation cursor tool.
z-rotation-icon-step: Variable, Read/Write.
Type: float angle in range (0 .. 3600).
Select Z axis rotation step. .
z-translation-cursor: Variable, Read/Write.
Type: float in range (0 .. 1000).
Select Z axis translation cursor tool.
z-translation-icon-step: Variable, Read/Write.
Type: float in range (0 .. 1000).
_ Select Z translation step.
zindo-1-pi-pi: Variable, Read/Write.
Type: float in range (0 .. 2).

Chapter 6

Catalog of HSV'’s and Direct Script Commands

_ Overlap weighting factors.)
zindo-1-sigma-sigma: Variable, Read/Write.
Type: float in range (O .. 2).
~ Overlap weighting factors.
ZIndO-S-pI-PIZ Variable, Read/Write.
Type: float in range (0 .. 2).
_ Overlap weighting factors. .
zindo-s-sigma-sigma: Variable, Read/Write.
Type: float in range (O .. 2).
Overlap we|ght|ng factors.
zoom: Command,
Arg list: float in range (0.01 .. 50).
Set the magnification.
zoom-cursor: Variable, Read/Write.
Type: float in range (1 .. 1000).
Select zoom cursor tool.
zoom-icon-step: Variable, Read/Write.
Type: float in range (1 .. 1000).
Select zoom step.

Type 1 (Hcl) Scripts 91

Catalog of HSV’s and Direct Script Commands

92 Chapter 6

Introduction

Chapter 7
Type 2 (Tcl/TK) Scripts

This chapter describes a new scripting language for HyperChem that appears
for the first time in Release 5.0. This language is called tid Command
Languageor just Tcl (“tickle”) for short. Tcl was developed by Professor
John Ousterhout and his students at the University of California, Berkeley
and placed in the public domain. Hypercube has build the language directly
into the HyperChem product. Tcl is a general purpose, but relatively simple,
interpreted scripting language. ltémbeddableThat is, one can extend the
core Tcl language with additional commands; Hypercube has imbedded the
full HyperChem Command Langua@tcl) into Tcl. This makes it an
extremely powerful language for molecular modeling. A HyperChem script
can now be made to do almost anything you wish with a relative modest
amount of programming.

Since Tcl is imbeddable, it commonly comes with an extra set of commands
that allow it to be used for building graphical user interfaces (GUI's). The
extra module is called thioolkit (TK) and the combination is called Tcl/Tk.
Within HyperChem it might be called Tcl/Tk/Hcl but we simply refer to it as
Tcl/Tk (or just Tcl when we are not concerned with graphical elements).

Because the Tcl/Tk/Hcl combination is so powerful it is now possible to write
whole graphical applications as simple scripts. They can be written quickly
and they can be debugged quickly since Tcl is an interpreted language. One
might first think that a scripting language is just a way of customizing Hyper-
Chem but there are many situations where Tcl can be used to write completely
new applications, reusing whatever functionality HyperChem conveniently
can provide. In other situations Tcl is a convenient glue language for interfac-
ing HyperChem to your own applications, possibly written in C, C++, or For-
tran. HyperChem contains many capabilities that you do not need or want to
replicate, but can just use - via this new scripting capability.

93

Elements of Tcl

Elements of Tcl

Books

Internet

This manual cannot be a tutorial or reference for Tcl! The language is exten-
sive and competent Tcl programmers must obtain the appropriate reference
books and materials as with any other programming language. Nevertheless,
with a few ideas described here and the examples that are provided, you
should be able to write your first Tcl/Tk program and can begin to extend
HyperChem, in some useful way, for your own purposes. Appendix B con-
tains a very brief outline of the Tcl commands.

The obvious way to start learning the language is through books on the sub-
ject or through user groups and other material on the Internet and World Wide
Web.

The obvious book to use is the one by Ousterhout himself. It is the oldest,
however, and may not be up to date compared with the latest releases of the
software.

» John K. QOusterhouf,cl and the Tk ToolkitL994, Addison-Wesley,
Reading, Mass., ISBN 0-201-6337-X.

» Brent WelchPractical Programming in Tcl and Tk, Prentiekall, 1994.

» Eric F. JohnsorGraphical Applications with Tcl & TKL996, M&T
Books, New York, N.Y., ISBN 1-55851-471-6.

Tcl resources are also readily available on the internet. The Usenet news-
group comp.lang.tcl may be useful to you. Some of the WWW sites where Tcl
resources are available are:

e http://lwww.sunlabs.com:80/research/tcl/
* http://lwww.sco.com/Technology/tcl/Tcl.html

e http://lwww.elf.org/tcltk-man-html/contents.html

Chapter 7

Elements of Tcl

What is Tcl?

The Tcl language is an interpreted scripting language that, after you are famil-
iar with it, is really quite simple and easy to use. However, to chemists and
those with limited programming experience outside C and Fortran, it may
seem somewhat strange to begin with. The language may seem to you to be
very oriented toward strings rather than numbers, but this is perhaps one of
its strengths.

Commands and Arguments

Tcl scripts ¢ . TCL) consist of a sequence of Tcl commands. Each Tcl com-
mand consists of the name of the command followed by its arguments:

command <argument1> <argument2> ...
Every command returnssiring. For example, the command,
incr $x 3
increments thgalueof x by three and returns the string corresponding to the

new value..

Variables and Values

Tcl allows you to store values Variablesand use values in commands. For
example, the command,

setx 3.5

stores the value 3.5 in the variable x. The value of x is the string, “3.5",
obtained by using the syntax, $x. To perform arithmetic like operations, one
must use a commanelxpr,that concatenates its arguments into a single
string, evaluates it as an arithmetic expression, and converts the numerical
result back into a string to return it. Thus,

expr $x * 3

returns the string, “10.5".

Command Substitution

This allows you to use the result of one command (a string) as an argument
in another command. Thus,

sety [expr $x + 0.5]

is the way to set y to the value of 4.0, or in general the way to perform arith-
metic. The square brackets invoke command substitution, i.e. everything

Type 2 (Tcl/TK) Scripts 95

Elements of Tcl

inside the square brackets is evaluated as a separate Tcl script and the result
of the script is substituted in place of the bracketed command.

Procedures and Control Structures

It is possible to write Procedures in Tcl. For example, a procedure called
power which when passed x and n computes as follows:

proc power {x n} {
set result 1
while {$n > 0} {
set result [expr $result * x]
set n [expr $n - 1]
}

return $result

}

The braces, { }, are like the double quotes that you place around words that
have spaces in them to make them into single words - “two words”, for exam-
ple. Braces nest, i.e. the last argument of the proc command starts after the
open brace on the first line and contains everything up to the close brace on
the last line. No substitutions occur within braces - all the characters between
the two braces are passed verbatim to proc as its third argument.

Tk

The Tk commands that are added to Tcl have to do with creating and using a
set of widgets that appear in a window that appears whenever you invoke a
Tcl script (unless you place the Tcl commahdOnly, at the start of the

script). The widgets include Labels, Text Boxes, Buttons, Menus, Frames,
Scales, Radio Buttons, Check Boxes, List Boxes, etc. A widget is created by
a command as follows:

<widget-type> <widget-name> <argument1> ...

The widget name traditionally starts with a “dot”. For
example, a button isreated as follows:

button .b -text “Push Me” -command { <action> }

This button with the text “Push Me” on it will appear in the GUI and will
cause the Tcl command <action> to be executed when it is pushed.

96

Chapter 7

Hcl Embedding

hcExec

hcQuery

Hcl Embedding

A necessary Tk command in a Tcl script is the one which lays out the widgets.
This pack command,

pack .b

lays out each of its widget arguments in the window, in the order in which the
arguments are named. By default a vertical ordering is used.

Finally, Type 2 or Tcl/Tk scripts can all execute any of the HyperChem script
commands in the HyperChem Script language (Hcl). Within a Tcl script these
Hcl commands are divided into two types:

» Executable command - hcExec
e HSV Query - hcQuery

The Tcl command for executing a Hcl command is hcExec. For example,
hcExec “do-molecular-dynamics”

hcExec “window-color green”

hcExec “menu-file-open”

hcExec “query-value window-color”

This command can be used to execute any Hcl script, including menu activa-
tions, direct commands, and any HSV read or write. However, an HSV read
such as, “query-value window-color”, will place the return message into a
HyperChem dialog on the screen as if it was a normal Hcl script and not return
anything to the Tcl script. The string that is returned from any hcExec com-
mand is always the empty string, . If one wants a Tcl script to manipulate
and use HSV results from HyperChem then the hcQuery command should be
used.

The Tcl command for querying HyperChem for the value of an HSV is
hcQuery. For example,

set x [hcQuery window-color]

Type 2 (Tcl/TK) Scripts 97

Examples

Examples

or
set x [hcQuery “window-color”]

The quotes are optional in this context. The hcQuery command is a hormal

Tcl call and returns a string as it should. Thus, if one queries an integer value,
a string is returned that represents the integer; everything is consistent. For
example, if the number of atoms in molecule 3 is requested,

set number_atoms [hcQuery “atom-count 3”]
then this value can be later used as in the following:

set twice_number_atoms [expr $number_atoms * 2]

While we have already seen a couple of very simple Tcl scripts in earlier
chapters, this section describes three examples to help you get started in pro-
gramming Tcl/Tk. The best way to learn the language is to use it. After under-
standing these examples, you should try a few scripts yourself. Obviously, if
you are to become relatively expert in this subject you will need to obtain
some books on Tcl or get assistance through the Internet in understanding the
full syntax and semantics of the language.

Calculating the Number of Atoms

You have seen in earlier chapters some simple TclOnly scripts. This script is
our first example of a Tcl/Tk script that uses Tk to generate a GUI. The exam-
ple is very simple and is used to show the number of atoms in the HyperChem
workspace. The code is very short,

entry .en -textvariable natoms -width 20

button .b -text "Calculate Atoms" -width 20 -command {
set natoms [hcQuery "atom-count"]

}

pack .b .en

This script has a GUI with two widgets. The first is a text entry widget,
referred to in Tcl/Tk as aentry. It can be used to enter text or, as in this case,
display text. We are going to use it to display the number of atoms in the
HyperChem workspace. The text in an entry widget can be bound to a Tcl
variable such that the text that appears always represent the current value of

Chapter 7

Examples

the variable. This is what we have done here; we have bound the variable
natomsto the entry widget.

The next widget is just a button widget as we have discussed above. When the
button is pushed, it executes the Tcl command,

set natoms [hcQuery atom-count]

which assigns a value to natoms that is the result of the query to HyperChem
for the value of the HS\gtom-counithe elimination of quotation marks
aroundatom-counis deliberate to show that they are optional). Natwm-
countis a vector and since we have left off the index describing the molecule
number, i.e. the specific component of the vector, all vector components will
be returned. If there are two molecules in the workspace, we will get two
components returned, etc. Because natoms is bound to the entry widget, the
value returned from pushing the button will appear in the entry widget.

Finally, the two widgets must be packed, i.e. they must be laid out on the win-
dow. The packing mentions the button first and then the entry so that this is
the order in which they appear in the window. The default layout scheme is

to have them arranged vertically. The result of pushing the button is thus:

E HyperChem - [untitled] = |E||5|
File Edit Build Select Display Databazes Setup Compute Scrpt Cancel
Help

8]0 e T 0™ Pl o el [= | 3 == =Rl L4

C:cdkichapt?... _ O] x|

Calculate Atoms

atom-count{1y =8

| | |.&mbe i

The title at the top of the Tcl/Tk window is the title of the script that has been
executed. Only one molecule is present so only the first component of the
vector is returned. If the Hcl script commandery-response-has-tag fajse

Type 2 (Tcl/TK) Scripts 99

Examples

had been executed in the Tcl script prior to the query for atom-count, then the
Tcl/Tk entry in the window would only show “8” as the tathpm-count(1)=
would have been eliminated.

To elaborate on this kind of script, you simply need to add more widgets and
perform more complicated actions when GUI elements like buttons are
pressed.

Calculating a Dipole Moment

This example Tcl/Tk script can be used to calculate a dipole moment for any
situation where there are atomic charges. The script is available on the Hyper-
Chem CD-ROM aslipole. tcl. The script makes the assumption that the
dipole moment can be calculated from the partial atomic charges only. These
are the charges you see when you ask for charge labels in HyperChem. This
script would perhaps be useful for molecular mechanics where HyperChem
currently does not calculate a dipole moment. If one uses the following Tcl
script to calculate a dipole moment from the Amber template charges of the
glycine dipeptide zwitterion, one gets,

aHypel[Zhem - [untitled] - IEllil
Fil= Edit Buid Select Display Databasesr Setup Compute Scrpt Cancel
Help

Bele|o v D= | t=e 2 2|

C:\cdkichapt3... _|0O] x|

¥ component .2h2
ycomponent | -21.6772 | A6 '3\0315:].032
0356
Z component _.IE:E /
0.032 0.032 0312
total 31&253
0.312 0.112

Calculate Dipole Moment | -0.504

[| M1

The Tcl script for this calculation will now be described. The first part of the
script is associated with setting up the eight label widgets for the text describ-
ing the four values and for the four values themselves.

100 Chapter 7

Examples

Labels

We are going to use labels to describe everything in this window apart from
the button. The labels need to be laid out both horizontally and vertically. The
easiest way to do this is to place labels horizontally into a frame and then
arrange the frames vertically. We use a simple flat label for the text describing
which dipole quantity we are talking about and a label with a relief ridge
around it for the showing the value. Thus, the first frame is just:

frame .f1

label .f1.11 -text "x component" -width 20

label .f1.12 -textvariable xdipole -width 20 -relief ridge
pack .f1.11 .f1.12 -side left

The label .11, for example, is a component of the frame .f1 as indicated by the
notation .f1.11. The packing is done horizontally starting at the left of the win-
dow. This first frame is for the variable that we have called xdipole, the x-
component of the dipole moment. The other three frames are identical:

frame .f2

label .f2.11 -text "y component" -width 20

label .f2.12 -textvariable ydipole -width 20 -relief ridge
pack .f2.11 .f2.12 -side left

frame .f3

label .f3.11 -text "z component" -width 20

label .f3.12 -textvariable zdipole -width 20 -relief ridge
pack .f3.11 .f3.12 -side left

frame .f4
label .f4.11 -text "total" -width 20

label .f4.12 -textvariable totdipole -width 20 -relief
ridge

pack .f4.11 f4.12 -side left

Type 2 (Tcl/TK) Scripts 101

Examples

Button

Finally, we pack the four frames from top to bottom. We will use a slightly
modified call to pack here, called the “configure” option which allows more
formatting which, in this case, we use to add a little more padding between
the frames.

pack configure .f1 .f2 .f3 .f4 -pady 10

The next part of the code describes the button and the action taken when the
button is pressed. The button is called .b and the action is everything between
the opening brace on the first line and the closing brace on the last line. The
first thing that is done is to execute a Hcl command to see that the value we
want comes back without a tag that would interfere with its direct use in Tcl
commands. We then initialize the component values of the dipole moment we
are going to calculate, and initialize the loop counter i. We then get the count
of the number of atoms in molecule 1 for the loop over atoms. The script we
are using here is limited to calculating only the dipole moment of molecule 1.
It is an exercise for the reader to extend this to calculate the dipole moment
of the whole molecular system when it has more than one molecule in it. The
loop is then entered.

button .b -text "Calculate Dipole Moment" -command {

hcExec "query-response-has-tag false"

set xdipole 0

set ydipole 0

set zdipole 0

setiO

set natoms [hcQuery "atom-count 1"]

while { $i <$natoms } {

incri1
The principal task inside the loop is to get the coordinates and charge of each
atom and to multiple them together, accumulating them as we go through the
loop. The charge is straight-forward as the first line below indicates. How-
ever, the coordinates of an atom come back as a string representing the three
X,Y,Z components separated by commas. This string, referred to here as sz,
must be parsed to extract the individual components which are placed in
arrays X, y, and z. The parsing is accomplished with string commands that

extract the length of a string (string length), look for particular substrings such
as “,” starting at the beginning of the string (string first), extract a substring

102

Chapter 7

Examples

out of a string (string range), search a string from the end to the beginning
looking for a substring (string last), or trim leading blanks off of a string
(string trimleft).

set charge($i) [hcQuery "atom-charge($i,1)"]

set sz [hcQuery "coordinates($i,1)"]

set sz_length [string length $sz]

set comma [string first "," $sz]

set x($i) [string range $sz 0 [expr $comma1 - 1]]

set x($i) [string trimleft $x(3$i)]

set commaz2 [string last "," $sz]

set y($i) [string range $sz [expr $comma1 + 1] [expr $comma2 - 1]]
set y($i) [string trimleft $y($i)]

set z($i) [string range $sz [expr $comma2 + 1] $sz_length]
set z($i) [string trimleft $z(3$i)]

This parsing may seem a bit difficult but this is about the worst that it ever
gets. Finally, the charges and coordinates are multiplied and accumulated.

set xdipole [expr $xdipole + $charge($i) * $x(5i)]
set ydipole [expr $ydipole + $charge($i) * Sy ($i)]
set zdipole [expr $zdipole + $charge($i) * $z($i)]
}

Once outside the loop, the dipole moment components are converted to
Debyes and then the total is computed from the components.

set factor 4.8033
set xdipole [expr $xdipole * $factor]
set ydipole [expr $ydipole * $factor]

set zdipole [expr $zdipole * $factor]

Type 2 (Tcl/TK) Scripts 103

Examples

set totdipole [expr $xdipole * $xdipole]

set totdipole [expr $totdipole + $ydipole * $ydipole]
set totdipole [expr $totdipole + $zdipole * $zdipole]
set totdipole [expr sqrt($totdipole)]

The last thing is to end the button code and to pack the button below the
labels.

}
pack .b

This completes the calculation of the dipole moment. Additional Tcl scripts
are available from the HyperChem CD-ROM.

104

Chapter 7

Introduction

Chapter 8
DDE Interface to HyperChem

This chapter describes the basics tdfveer-levelDynamic Data Exchange
(DDE) interface to HyperChem and illustrates it with interactions between
Microsoft Word or Microsoft Excel and HyperChem.

DDE versus HAPI

The DDE interface is referred to here as lower-level because Hypercube’s
new CDK has introducedrdgher-levelinterface that sits on top of DDE and

is referred to as the HyperChem Application Programming Interface (HAPI).
The HAPI way to interface programs to HyperChem is fully described in
Chapter 11. One point about making HAPI calls rather than DDE calls is that
it has abstracted away from any machine or operating system dependency on
DDE and can be used in a UNIX environment, etc. Any investment in HAPI

is preserved since HAPI will be re-implemented by Hypercube if new lower
levels of interprocess and interprocessor messaging replaces DDE.

Use of DDE in Windows Applications

The DDE interface is more stricthperating system dependéhan it really

is very low-level. We will illustrate it here with a word processor and a
spreadsheet. The next chapter illustrates its use within Visual Basic programs.
These DDE interfaces are actually relatively high-level interfaces and are
available for multiple word processors and spreadsheets. The DDE interface
is very standard for Windows programs and many manufacturers have
adopted it. It is almost non-existent outside the Microsoft Windows environ-
ment, however. Nevertheless, almost any Windows program will have a DDE
interface and HyperChem can have conversations and exchange data with a
large number of other standard Windows programs. We illustrate the CDK
technology using DDE interactions between HyperChem and Word, Excel or

105

Basic Properties of DDE

Visual Basic, because these are very prominent programs of their class not
because identical interfaces could not be demonstrated for other word proces-
sors, spreadsheets, etc.

There are indications that Microsoft might eventually replace DDE with
something referred to as OLE Automation. Essentially identical consider-
ations would really apply to this new approach compared with the discussions
given below for DDE. Nevertheless, a newer version of HyperChem might
some day be needed to replace HyperChem'’s current use of DDE with OLE
Automation. There are no indications that Microsoft will abandon its use of
DDE anytime in the near future.

Basic Properties of DDE

Dynamic Data Exchange is a mechanism for interprocess communication in
Windows and NT. Two separate programs carry on a DDE conversation by
sending messages to each other. The two programs are referred to as a client
and a server. A DDE server generally has data or services that may be of inter-
est to another program. A DDE client wishes to obtain such data or services.
In our context, HyperChem is a DDE Server and makes its data and services
available to other programs. A client such as Microsoft Word or Excel, or
your program, initiates a communication with the HyperChem Server,
exchanges data with it, and sends it messages to control its actions.

Two programs that engage in DDE conversations with each other need not be
specifically coded to work with each other. A DDE Server, such as Hyper-
Chem, will publicly define its messaging protocol so that all clients know in
advance how to obtain services from the server.

A protocol begins with a server defining the name ddijitglication atopic

for the conversation, and @aamthat defines the exchange. In most cases the
item is a piece of data to be read from the server.The client initiates the con-
versation by using the application and topic to establish a communication link
In our case, the applicationtiyperChemthe topic is alwaySystemand the

item is the name of an HSV. In addition, commands can be sent to the server
and this is the way menu activations, direct commands and HSV writes are
performed.

DDE Message Types

Each DDE interaction or message passed between client and server is a mem-
ber of a small number of types. The relevant message type for messages sent
from your client program to the HyperChem server are as follows:

106 Chapter 8

DDE Interface to Microsoft Word

DDE_INITIATE

This message, broadcast by a client, requests a conversation with an applica-
tion on a topic. Hyperchem will respond if the application is “HyperChem”
and the topic is “System”.

DDE_ EXECUTE

This is the message sent by a client to HyperChem to have it execute a piece
of text corresponding to a script command. Thus the content of such a mes-
sage might be, “window-color green” or “do-molecular-dynamics” to cause
the background HyperChem window to turn green or to initiate a molecular
dynamics trajectory.

DDE_ REQUEST

This message type is the traditional client request for a piece of data. The item
named in the request is the data being requested, such as “window-color”,
“scf-binding-energy”, etc.

DDE_ ADVISE

This message type is sent when the client is requesting a hot link for an item.
This means that the server will return an HSV automatically on the hot link
whenever the data representing the HSV changes within HyperChem.

These ideas can be illustrate with simple Excel and Word macros or, as in the
next chapter, by simple Visual Basic Programs.

DDE Interface to Microsoft Word

Microsoft Word and other Windows word processing programs can talk DDE

to other Windows programs. These conversations can be used to make a doc-
ument come to life with illustrations, etc. For example, a tutorial on some
aspect of chemistry could be written in Microsoft Word. The manuscript

could contain buttons which the reader could push as they were reading about
a topic. These would cause a HyperChem window on the same screen to per-
form calculations on, or illustrations of, the molecular systems being
described in the manuscript.

In this and following sections we will describe the topic of DDE communica-
tion with a very trivial illustration that just changes the color of the Hyper-

DDE Interface to HyperChem 107

DDE Interface to Microsoft Word

Chem screen. This example has very little chemical meaning bwistis

and easily seen when you try it. It is characteristic of hundreds of other avail-
able HSV’s that do have chemical meaning and it is an example of an HSV

that is both readable and writable. You should be able to extrapolate from this
trivial example, that illustrates the basic idea, to examples that perform more
meaningful chemistry in line with your own teaching or research interests.

Red and Green Example

Channel = DDEInitiate (“HyperChem”,

The following screen shows a Microsoft Word document.

1. Bring up a copy of Microsoft Word and type a few lines of text into it.

B Micrasort Word -oix
File Edt Wiew Inset Fomat Tools Table Window Help
D38| Sl 3 [mlel] ok o] sl mimle=]e)m sz v [=[Pl
[Normal =]/ [TimesNewRoman] [10 -] B|r glaﬁ,v = =(=|=| == |¢E|E
g iic]mT“;:at:uickly add borders and ghading, click the Borders button, and then use the Bnldzs ﬂ EI EH
Blk_wht_doc 7 x|
[Koo [2 o 3 1o R 5 e
Thisis a
Word for Windows
document
=
4
3
=k | H.
|Page 1 Sec1 11 [At18° LnE Coll

725 |7 o [|

What we are going to do is add two buttons to the text that you can click on
to effect actions in HyperChem. Let us first of all create two Word Macros.
Word comes with a dialect of Word Basic that you can use to customize Word
and write macros. These macros are then associated with a particular template
file (* .dot). When that template is in use, these macros are available.

2. Select the <Tools/Macro...> menu item and create a macro with the
name, RedMacro. That is, type RedMacro in the text box, “Macro
Name”, and choose a convenient template file to use for “Macros Avail-
able In:”, and then push the “Create” button.

3. Add the following Word Basic code to create the macro,

“System”)

108 Chapter 8

DDE Interface to Microsoft Word

DDEExecute Channel, “[window-color red]”
DDETerminate (Channel)

You should see a screen such as the following.

TY Microsaft Word - o) x|

Eile Edit Wiew Inset Faomat Tools Table ‘window Help
D[218] SIR[] & Fal@l<] o] sl ez =1 [k2]
IMacroText j ICuurielNew j |1U -| Blr|u|f&~| = EI

3] To quickly add boiders and shading. chick the Boiders button, and then use th -
g o =12

" Macro 2=l = =
| 7=[C=]ss] \
Macro Mame: =
Record
M Global: RedMacro 10| x|
= Cancal
Sub MATN
Bun Channel = DDEInitiate("HyperChem”, "3Ivstcem™)
DDEExecute Channel, "[window-color red]®
Edit DDETerminate (Channel)
[elete
End Sub
Organizer... -
Macras uwailable In:
[Mormal dat [Global Template) =l
Drescription:
]
a |

Runs, creates, delstes, or revises a macio

The macro code simply initiates communication with the application, Hyper-
Chem, on the topic of System and then sends a DDE_EXECUTE message to
HyperChem containing the text that corresponds to a HyperChem script com-
mand, which here sets the background window color to red.

Next you need to implement something in the Word document that triggers
the Macro. Assuming the text cursor in the document is where you want it,

4. Select the menu item <Insert/Field...> to bring up the following dialog
box.

DDE Interface to HyperChem 109

DDE Interface to Microsoft Word

Field

Lategaries:

D ate and Time
D ocument Automation
D ocument [nformation

Field Mames:

Ok

Last5 avedBy
Link.

=

Options. ..

2
o |
Cancel |

_ Gplons.._|

E quationz and Formulaz _l
Index and Tables MergeSeq

Links and References Mest

Mail Merge MNextlf

MNumbering MNoteRef

Uzer Information NurmChars j
Field Codes: MACROBUTTOM MacroMame DisplayT ext
IMAEHDBUTTDN Fediacro RED]

Description

’VF!un a macro

¥ Eresenve Formatting During U pdates

5. Select the “Field Name” correspondingMacroButtonas shown and
then type argumenfRedMacroand some arbitrary text, suchRED,
into the bottom text entry box, as shown, prior to hitting OK.

6.

Repeat the whole process for a “Green button”.

You should now see something resembling the following.

B Micrasoft Woid] 53]
File Edit Wiew Insert Format Tools Table ‘Window Help
(= = e A = = s e e e e R =
INurmaI =] [TmestewRoman =] [0 =] B[z |o|<)|[= =HE
3]Tn quickly add borders and shading. click the Borders button. and then use the Borders &
‘Q toolbar. j _I _I |
[RedGreen. doc I [l 5]
I N R R R R R R RN R R
R Thisis a
- Word for Windows
N document
- RED
. GREEN
- =
N E
) E
EE=« I o

|Page 1 Sec i 11 (A8 Lnk Col

25T e v v g

2

If you now bring up HyperChem and double click on either of the two “but-
tons”, i.e. the text RED or the text GREEN inside the Word document you

will see these color changes in HyperChem.

DDE Interface to Microsoft Word

Extended Example

The first example of Word Basic above was about as simple as one can get.
Word Basic has more programming capability than that example showed. A
slightly more elaborate example can show some of this programming capa-
bility. The following five macros that we are about to describe were generated
exactly as above and correspond to the large bold-faced type of the document
shown below:

W oot i
Fle Edit View lwet Fomst Took Table Window Help

D6 S{a]%| &[m|@|s] of|~-| Bl S| 5]m] s | w0 |
INolmaI =l ITimesNewHoman =l m l? I|H|4€||‘| %El%l%l §E|EE|£,§|£,§| EI ‘

3] To quickly add borders and shading. click the Borders button, and then use the Borders
toolbar. ~ EI EI

Document2

b —

Dear 3,

Towork with HyperZhem please double click your mouse on the following lines

Start HyperChem

Connect to Hyper(hem
Open Buckminsterfullerene

Get Some Data

- Quit Conversation
EE=d

|PagE 1 Sec 1 141 |At 22" Ln8 Col1 REC |MEK ,W OvE [wPH [CE /ﬂ

The five macros used here are:

ActivateHC

Sub MAIN

If (AppIsRunning("HyperChem") = 0) Then
LineDown

Insert "Starting HyperChem ..." + Chr$(13)
Shell "c:\hyper\chem.exe"™, 0

LineUp

EndIf

End Sub
Each of these macros has a MAIN subroutine. You may use additional sub-

routines below, or above, the MAIN subroutine. This macro starts Hyper-
Chem on the assumption that it is in the directory\hyper. Your copy

DDE Interface to HyperChem 111

DDE Interface to Microsoft Word

may not be in this same location. The Insert command puts text at the current
cursor and LineUp and LineDown move the cursor.

ConnectHC:

Sub MAIN

channel = DDEInitiate ("HyperChem", "System")
If (channel <> 0) Then

c$ = Str$(channel)

SetDocumentVar "channel", c$

LineDown

Insert "Document <-> HyperChem connection is ready ..."

Else

LineDown

Insert "Cannot connect to HyperChem !!!"

EndIf

End Sub
The above macro starts HyperChem and stores the communication channel in
a variable that can be accessed by other macros.

ExecuteCmd
Sub MAIN
c$ = GetDocumentVars$ ("channel™)

channel = Val (c$)

name$="c:\hyper\c60.hin"

AppMaximize "HyperChem", 1

DDEExecute channel, "open-file " + name$

DDEExecute channel, "align-viewer z"

DDEExecute channel, "align-molecule primary, x, tertiary, z"

DDEExecute channel, "menu-display-scale-to-fit"

DDEExecute channel, "zoom 1.4"

DDEExecute channel, "menu-edit-copy-image"

LineDown

EditPaste

End Sub
The above macro is an example of one that opens a file containing Buckmin-
sterfullerene (Gg), manipulates it in HyperChem and then copies and pastes
it into the document.

GetData

Sub MAIN

c$ = GetDocumentVar$ ("channel")

112

Chapter 8

DDE Interface to Microsoft Excel

channel = Val (c$)

atom count$ = DDERequest$ (channel, "atom-count")
atomic symbol$=DDERequest$ (channel, "atomic-symbol")
LineDown

Insert atom count$

Insert atomic_ symbol$

End Sub
The above macro first retrieves the text representation of the HyperChem vec-
tor variable atom-countwhich represents the number of atoms in each mol-
ecule. The second query retrieves the atomic symbols for the atoms in the
workspace (C for Carbon, in this case).

DisconnectHC

Sub MAIN
c$ = GetDocumentVar$ ("channel")
channel = Val (c$)
DDETerminate channel
End Sub
This last macro terminates the connection to HyperChem.

The macros above are stored as part of a Microsoft Word TEMPLATE, not

as a part of the document. So, as long as you are using the same template, you
do not need to worry about macros: they are always in place. However, if you
move your document to another machine, or if you want to distribute it, you
must remember to move the template also. You may save a template ina DOT
file of Microsoft Word.

Install the macros and try them.

DDE Interface to Microsoft Excel

Microsoft Excel is an example of a spreadsheet that has extensive capabilities
for DDE conversations with HyperChem. You can, for example, set up tables
of molecules and automate the computation of molecular properties so that
they show up in tables within the spreadsheet. The capability for using a
spreadsheet in conjunction with HyperChem will only be very briefly be illus-
trated here, as another example of the richness of the CDK and the open archi-
tecture of HyperChem. This capability has been there since HyperChem’s
inception and has been fairly commonly exploited so it will not be dwelled on
here.

With Release 5 and the CDK, the spreadsheet capability has been enhanced
because of the addition of enhanced scripting, i.e. now Tcl/Tk scripts in addi-

DDE Interface to HyperChem 113

DDE Interface to Microsoft Excel

tion to Hcl scripts as with earlier versions of HyperChem. However, Excel
macros have considerable programming and GUI capability so that if one pre-
fers to program within a product like Excel itself, it might be that the
enhanced functionality of HyperChem along with more Hcl scripts is more
important to you than the addition of Tcl/Tk.

We emphasize Microsoft Excel here as our spreadsheet example but others
spreadsheets such as Lotus 123, Quatro Pro, etc. also have DDE capability
and could be used to communicate with and exchange data with HyperChem.
The examples here are restricted to Excel, however.

We will illustrate the interface of HyperChem and Microsoft Excel using the
same example as we began with in describing Microsoft Word, i.e. the trivial
example that sets an HSV (window-color).

Red (and Green)

A very simple Excel Macro is the following:

3 Microsoft E: =10l |
ﬁfile Edit View |nzert Fommat Toole Data Wwindow Help _|ﬁ||5|
D|z|d| SRy &|mBl@[<] o« =|a] 23] K] @4
[MS Sans Sert = = slz|o| === %],]
Charnel =] | =INITIATE{"HyperChem" "System")

A] T =
1 |Control-r Test.Macro
2 [Channel |=INITIATE("H perChem","Svstem") | J
3 =EXECUTE(Channel."[window-calor red]")
4 =RETURN{
5
b
|<T4 b| [Red / JEN| | LlJ_‘
Ready | 1 [| | | =

Running this macr®ED . XL.M, will change the color of the HyperChem win-
dow to red. It can be run by simple hitting Ctrl-r on the keyboard (provided
Excel is running) or from the <Tools/Macro...> menu item. As in earlier
examples, we simply initiate a conversation withapplication Hyper-

Chem, on théopic, System. We then execute a DDE command that is the Hcl
script commandwindow-color red A similar macro could change the color

to green but with a different keyboard accelerator such as Ctrl-g. Then, alter-

114 Chapter 8

DDE Interface to Microsoft Excel

nately hitting Ctrl-r and Ctrl-g would flash the HyperChem window from red
to green to red..., etc.

The macro DDE commands, EXECUTE and REQUEST are fundamentally
all you need to communicate with HyperChem. Other macro programming is
needed, of course, to deal with the data coming from or going to HyperChem.

Additional Macros

The Excel macro language and Excel itself provide a powerful capability in
combination with HyperChem but will not be described in detail here. The
HyperChem Getting Started and Reference manual provide additional detail
associated with the interaction between HyperChem and Excel and examples
* XLM files have been distributed with HyperChem since its inception. The
ChemPlus product includes the code for an extensive Excel macro that makes
3D Ramachandran-like plots of the energy of a molecule versus two indepen-
dent structural variables. You should also check the Hypercube WWW site
(http://ww.hyper.com) where Excel macros, along with scripts, are made
available to users of HyperChem.

DDE Interface to HyperChem 115

DDE Interface to Microsoft Excel

116 Chapter 8

Introduction

Chapter 9
DDE and Visual Basic

This chapter describes the DDE interface between HyperChem and
Microsoft's Visual Basic (VB). VB is chosen because it provides a very fast
way of building extensions to HyperChem. While VB is not the only tool in

its class, it is certainly one of the better ones. Some of the prejudice against
Basic as a serious programming language remains, among scientific program-
mers and others. VB, however, is a serious modern tool that can allow you to
very quickly put together applications, particularly applications involving
graphical user interfaces, in a few hours - applications that used to take weeks
or longer. For the demonstrations of the chapter, we will use Visual Basic 4.0
although earlier releases are also appropriate to use.

VB for GUIs or Computation

While one can certainly write whole applications in Visual Basic, its object-
oriented character and uniqueness are illustrated best when quickly putting
together a graphical user interface(GUI) rather than scientific number crunch-
ing types of code. A potential compromise is to build dynamic link libraries
(DLL’s) with C, C++, or Fortran and just have the GUI built in Visual Basic.

A VB program can call a DLL, and you can choose the best of both worlds
by rapidly protyping a user interface in VB and using legacy code in Fortran,
for example.

VB with DDE or HAPI Calls

Since VB can call a DLL, it can call the DLL that defines the HyperChem
Application Programming Interface (HAPIL.DLL). The subject of the HAPI
library, its calls, and how to use this method of interfacing to HyperChem is
the subject of Chapter 11 and the subsequent chapters which give examples

117

Red and Green

of the HAPI library being used in various contexts. Chapter 11 includes a
brief example of using HAPI calls with VB.

This chapter will focus on the low-level DDE interface to HyperChem for VB
programs but we will also discuss very briefly the alternative HAPI way to
build an interface between HyperChem and VB.

Red and Green

Our first example of a Visual Basic program communicating with Hyper-
Chem is, by now, our familiar and trivial example of a program that changes
the background color of a HyperChem window. This particular example,
however, also monitors the current color and displays the color, whether it is
changed by the VB program or through the <Preferences> dialog box in
HyperChem.

Basic Form and Controls

The VB project file for this example is calleREDGREEN.VBP and is on

the HyperChem CD-ROM. It was created by just opening Visual Basic and
adding to the main form, three text boxes, Textl, Text2, and Text3 plus two
command buttons, Commandl and Command2.

[y Form1 =10j x|
. ZTBH” HE R D
|Text2 Text3

Command1 |
.& Command2 [

It is possible to lay out these linkcontrols and start from scratch or you can
just readREDGREEN . VBP from the HyperChem installation directories,

118

Chapter 9

Red and Green

[y DDE to HyperChem - 0] x|

Textl Teut3 SEREE
........ Red SESEEEESS
SERREESE Green SESRERESS
o [Tem2 SEREEES

What we have done here is to change the caption of Form1, the main form, to
“DDE to HyperChem” and the caption of the two command buttons to “Red”
and “Green”. We have also positioned the controls that have the Visible prop-
erty set to “true”, i.e. Text2, Commandl, and Command2. We have also
changed the background color of Form1 to white and shrunk it a bit. A run-
ning version of the program might look as follows:

'L DDE to HyperChem =10l =l
Red
Green
Iwinduw—culul = Black

Start Up (Load)

The most important code in this example is that which on start up establishes
the basic link with HyperChem and retrieves the initial color of the window
(which will be restored on exit). The following is the code that is executed
when Form1 loads,

DDE and Visual Basic 119

Red and Green

Private Sub Form Load()
If Textl.LinkMode = 0 Then

Textl.LinkTopic = "HyperChem|System"
Textl.LinkMode = 2

End If
Textl.LinkItem = "window-color"

Textl.LinkRequest
Text2.Text = Textl.Text

If Text3.LinkMode = 0 Then

Text3.LinkTopic = "HyperChem|System"
Text3.LinkItem = "window-color"
Text3.LinkMode = 1

End If

End Sub

With Visual Basic, a communication channel to HyperChem becomes asso-
ciated with a control such as one of the text boxes on the form, i.e. Textl or
Text3. Once such a channel is set up, text being passed back and forth
between the VB application and HyperChem is stored in VB, as the text field
associated with the control, i.e. as Textl.Text or Text3.Text. These text fields
are where Hcl script commands are placed prior to their execution and where
any HSV messages coming from HyperChem end up.

A Cold Link Request

The LinkMode field for a text object describes the type of channel that is
established or exists with another application (DDE server) like HyperChem.
A value of 0 indicates no link or channel. Setting the value to 2 establishes a
cold link for the channel such that values will be returned from HyperChem
only when requested. The first operation on start up is thus to use the Textl
object to establish a cold link with HyperChem on the generic topic, “Sys-
tem”. Subsequently, a message request is made of HyperChem for the HSV,
window-color. The return message from HyperChem containing the value of
the HSV,window-color is automatically placed into the text field of the

Textl object, i.e. as Textl.Text. The Textl object has the visible property set
to false so that it is not visible on the running application. Another text box,
Text2, is used to display the value of the current window color. The appropri-
ate operation above is to just pass Textl.Text into Text2.Text so that it is
shown to the user.

120

Chapter 9

Red and Green

A Hot Link

The Text3 object in this example is used to establish a “hot link” to Hyper-
Chem, associated with LinkMode = 1. This means that whenever HyperChem
detects thatvindow-colorchanges its value, from whatever source, Hyper-
Chem will notify whoever is listening of the new value. Setting LinkMode
equal to 1 establishes this hot link to HyperChem requesting a desire to listen
to the Linkltem.

The value returned to the VB application by HyperChem goes into the text
field of Text3 and this field is automatically updated whenever the value
changes in HyperChem. This placing of the new value into Text3.Text can be
detected using the routine, Text3_Change(). The code for this routine in our
example is,

Private Sub Text3 Change ()
Text2.Text = Text3.Text

End Sub
This just takes the current value of the color and places it into the Text2 object
so that it is visible to the user of the VB application as part of the VB window
(form).
Execute

Next, we look at the code behind the two buttons that change the color of the
HyperChem window to Red or Green when they are “clicked”. The code for
the red command button is,

Private Sub Commandl Click()

Textl.LinkExecute ("window-color red")

Text2.Text = "window-color = Red"

End Sub
This code, simply sends a Hcl script command message to HyperChem. Here
it changes the window color to red but it could be any script command from
the HyperChem Command Language (Hcl) except that it should not be a
query of an HSV (Use LinkRequest for these). In addition, the color displayed
locally in Text2 is updated.

Unload

The final portion of this example is the code that is executed on exit from the
VB application. This is,

Private Sub Form Unload(Cancel As Integer)

DDE and Visual Basic 121

A HAPI Interface to VB

Textl.LinkExecute (Textl.Text)

End Sub
This code return the color of the HyperChem window to its original color
prior to executing the VB application. This color is still stored in Textl.Text
as per the original request on loading of the form.

A HAPI Interface to VB

The Visual Basic example above showed how to make DDE calls to Hyper-
Chem, via an object such as a text box that provides the DDE channel or link.
It is very object oriented but not an obvious way to do things for conventional
C and Fortran programmers. Nor is it immediately obvious how to transfer
binary data in this fashion.

The HAPI interface for VB consists of a set of straight-forward calls (either
for text or binary data) that can be implemented in ordinary Basic code. The
calls, such aBbExecBinwhich executes a binary form of a Hcl command, all
begin with “hb”. Thus hbExecTxt is the text equivalent of the above. These
and all the other HAPI calls that refer to Hcl script commands take as their
first argument a long integer, defined in the fiv . BAS. This integer maps

to one of the many Hcl menu activations, direct commands, or HSV
read/writes. For these calls, the name of the long integer is the normal Hcl
name, e.gwindow-color but with hyphens replaced by underscores. That is,
the relevant VB name to use for HAPI callsvisdow_color Thus,

Dim Value As Double

Dim Result as Long

Value = 3.5

Result = hbSetReal(dipole moment, value, 8)

is the code which would constitute a binary write of the value 3.5 to the
HyperChem dipole moment. The integer variable “dipole_moment” is
defined inHSV.BAS. This call is really targetted at a corresponding C lan-
guage routine, hcSetReal, contained in the dynamic link litka®7 . DLL.
The fileHAPI . BAS makes the appropriate declaration to tie hbSetReal to
this DLL and should be included in all your Visual Basic applications that
wish to use the HyperChem API.

Thus, any of the HAPI calls of Chapter 11 or Appendix C can be used in
Visual Basic programs. All that is necessary is to include two fileg, BAS
andHAPI.BAS, in your project and to make calls to routines labelled hb...
rather than to the hc... calls of the C/C++ language or to the hf... calls of For-

122 Chapter 9

A HAPI Interface to VB

tran. Appendix C gives the details of each HAPI call including how to declare
and use them from Visual Basic.

DDE and Visual Basic 123

A HAPI Interface to VB

124 Chapter 9

Chapter 10
External Tcl/Tk Interface

Introduction

Hypercube has built a Tcl/Tk interpreter directly into HyperChem Release 5.
This interface derives from Version 7.5 of Tcl and Version 4.1 of Tk. This
internalinterpreter is probably the most convenient way to use Tcl/Tk in con-
junction with HyperChem, i.e. by either opening accl file or by execut-

ing a Hcl script commandead-tcl-script There is, however, an alternative
way to use Tcl/Tk that is called tleaternalinterface.

The external use of Tcl/Tk implies that you use a Tcl/Tk program or inter-
preter that is completely separate from HyperChem and may even be of a dif-
ferent version than the one used in HyperChem. This external Tcl/Tk inter-
preter can then be augmented in a standard way to add the HyperChem Com-
mand Language (Hcl) as an embedded extension. The external Tcl/Tk pro-
gram communicates ultimately with HyperChem via Dynamic Data

Exchange (DDE). But, as a user, you need only to make “HAPI calls” just as
with the internal interpreter. That is, hcExec and hcQuery are still how you
invoke Hcl commands with external Tcl/Tk.

Why External?

The interpreter for Tcl/Tk which is built into HyperChem offers an extremely
powerful extension to the HyperChem Command Language. However there
are certain situations where you might prefer external Tcl/Tk access to Hyper-
Chem. Such situations arise when:

1. You want to connect to HyperChem from another complex application
already containing a Tcl/Tk interpreter as an extension to that applica-
tion.

125

Invoking External Tcl/Tk

2. You want your Tcl program to react to changes in HyperChem via HSV
notifications. Notifications cannot be easily defined with internal Tcl/Tk
scripting.

3. Anew version of Tcl/Tk becomes available and it is not yet incorporated
into HyperChem. The new version of Tcl/Tk has enhancements that are
necessary to you.

4. The internal implementation of Tcl/Tk does not perform correctly for
some non-regular scripts or you encounter a devastating bug.

Hypercube has implemented a Tcl/Tk extension “package” (called the
THAPI package) that you can load into a standard Tcl/Tk interpreter and use
to communicate with HyperChem through regular HAPI calls. This chapter
describes this extension.

Invoking External Tcl/Tk

The external copy of Tcl/Tk is invoked in Microsoft Windows by executing
the interpreter program, a Windows SHell called Wish. Associated with Ver-
sion 4.1 of Tk, this program is calledsh41and is included in your program
directory along with your executable of HyperChem.

Wizhd1.exe

Executingwish41.exe gives a Console window, shown below after exe-
cuting “?” to see all the possible Tcl/Tk commands.

126

Chapter 10

The THAPI package

Console] 4
47 Y
anbiguous command name "7?": . Exit TclOnly after append array auto_execolk auto 1

oad auto_mkindex auto_reset bell bind bindtags brealk button canvas case catch cd
checkbutton clipboard clock close concat console continue destroy entry eof err
or eval exec exit expr fblocked fconfigure file fileevent flush focus for foreac
h format frame gets glob global grab grid history if image incr info interp join
label lappend lindex linsert list listbox llength load lower lrange lreplace ls
sarch lsort menu menubutton message open option pack package pid pkg_mkIndex pla
ce proc puts pwd radiobutton raise read regexp regsub rename return scale scan s
crollbar sesk selection set socket source split string subst switch tclPkgSetup
t=]lPlkglnknown tell text time tk tkButtonDown tkButtonEnter tkButtonInwvoke tkButt
onleave tkButtonUp tkCancelRepeat tkCheckRadiolnwvoke tkEntryhutoScan tkEntryBack
=pace tkEntryButtonl tkEntryClipboardMeysyns tkEntryClosestGap tkEntryInsert tkE
ntrykKeySelect tkEntryHouseSelect tkEntryPaste tkEntrySeslnzert tkEntrySetCursor
tkEntryTranspose tkFirstMenu tklistbozliutoScan tklistboxBeginEztend tkListbozBeg
inSelect tklistboxBeginToggle tklistboxCancel tklistboxDataEzxtend tklListbozExzten
dUpDown tklistbozMotion tkListbozSelecthll tklListboxUpDown tkMbButtonUp tkMbEnte
r tkMbleawe tkMbMotion tkMbPost tkMenuButtonDown tkMenuEscape tkMenuFind tkHenuF
indHame tkMenuFirstEntry tkMenulnvoke tkMenuleawve tkMenuleftRight tkMenuMotion t
kMenuNextEntry tkMenullnpost tkPostOverPoint tkSaveGrablnfo tkScalsictivate tkSca
leButton2Down tkScaleButtonDown tkScaleControlPress tkScalelrag tkScaleEndDrag t
kScalelncrement tkScreenChanged tkScrollButton2Down tkScrollButtenDown tkScrollB
uttonlp tkScrollByPages tlkScrollBylnits tkScrollDrag tkScrollEndDrag tkScrollSel
ect tlScrollStartDrag tkScrollToPos tkScrollTopBottom tkTexthutoScan tkTextButto
nl tkTextClipbosrdkeysyns tkTextClozestGap tkTextInsert tkTextHeyExtend tlkTextle
vSelect thTextHextPara tkTextPaste tkTextPrevPara tkTextResetinchor tkTextScroll
Pages tkTextSelectTo tkTextSetCursor tkTeztTranspose tkTextlUpDownline tkTraverse
ToMenu tkTraverseWithinMenu tk _popup tk textCopy tk_textCut tk textPaste tkwait
toplevel trace unknown unset unsupportedl update uplevel upvar wwait while winfo
Wi =
F4

In addition to this console window, into which you type Tcl/Tk commands,
you obtain another window where Tk widgets get placed after you request
them from the Console window.

The THAPI package

It is possible to add new functions, called packages, to the external Tcl/Tk
interpreter without having to recompile Tcl/Tk. The set of commands that can
be added to an external copy of Tcl/Tk are part of the Tcl Hyperchem Appli-
cation Programming Interface (THAPI). There are 12 commands in total and
they are all contained in a Dynamic Link Library (DLL) calteaPT . DLL.
These commands are essentially a subset of the HAPI calls from HAPI.DLL.

To obtain these new commands in Tcl/Tk you use théoddicommand giv-

ing it the file name of the appropriate package DLL. Thus, to augment Tcl/Tk
and embed all the HyperChem API calls, you should just execute the follow-
ing Tcl command in the Console window,

load thapi

If the THAPI.DLL is not available in the current path nor in Windows direc-

tory, you must specify a full path to the file. Remember that Tcl comes from
the UNIX world and you must type a slash, "/, rather than a back slash. *\”
as the file folder separator in the Console window.

External Tcl/Tk Interface 127

The THAPI package

Commands

THAPI, based on the full HAPI interface of the last chapters of this book,
defines a dozen new Tcl/Tk commands that enable you to call the most impor-
tant features of the HyperChem Application Programming Interface from
your Tcl/Tk external program. Further details on these commands is available
in conjunction with a description of the HAPI calls in Appendix C. THAPI is

a subset of HAPI.

The THAPI commands divide up into commands associated with connecting
to HyperChem, the execution of Hcl commands, a utility copy command,
HSV notifications, time-outs, and error processing.

The THAPI commands, which are case sensitive, are:
hcConnect <instance>

This command connects a Tcl/Tk program to HyperChem so that the other
THAPI commands can be executed. It must be called before any other THAPI
commands and after the command loading THAPI. The argument is optional
but can be used to connect to a specific instance of HyperChem when multiple
instances exist simultaneously.

hcDisconnect

This command disconnects the Tcl/Tk program from HyperChem.

hcExec hcl_script_command

This command passes its argument to HyperChem as a normal Hcl script
command. The argument may need to be enclosed in quotes if it itself has
arguments.

hcQuery hsv

This command queries HyperChem for the value of an HSV and returns it as
a string

hcCopy source_file desination_file

This command copies a file.

128 Chapter 10

The THAPI package

hcNotifyStart hsv

This command requests a notification of the HSV corresponding to the argu-
ment. If the HSV changes in HyperChem its new value will sent to the Tcl/Tk
script. The new value can be made available to the script via hcGetNotify-
Data. No call-back routines are available in scripts so that the execution of
hcGetNotifyData must be periodically scheduled via a Tcl command like
after (see the monitor example).

hcNotifyStop hsv

This command requests that the notification of changes in an HSV be termi-
nated.

hcGetNotifyData notification_data

This command will place the result of the first notification from an internal
buffer into the argumennotification_data The command returns the HSV

corresponding to the original notification (or NULL) so that you can check
whether a notification has happened or not and whether it is the right one.

hcSetTimeouts exec_timeout query_timeout rest_timeout

This command controls the time-out for interaction with HyperChem if the
default values (65 seconds) is inappropriate. The exec_timeout is the time-out
for hcExec commands, the query_timeout is the time-out for hcQuery com-
mands, and the rest_timeout is the time-out for the remaining Hcl commands,
such as for notifications.

hcLastError error_text

This command places text describing the last error in error_text. It returns the
following values:

errNO_ERROR =0 No error
errfFATAL = 1 Fatal error of unknown origin

errNON_FATAL =2 Non fatal error of unknown origin

hcSetErrorAction action_flag

This command sets the behavior flag that will be used, upon recognition of an
error. The arguments are as follows:

errACTION_NO =0 No action on any error

External Tcl/Tk Interface 129

A Notification Example

errfACTION_MESS BOX =16 Display message box with error message
errfACTION_DISCONNECT = 32 Disconnect from HyperChem

errfACTION_EXIT = 64 Immediately exit from application

errDDE_REP =1 Report low-level DDE errors

errDDE_NO_REP =2 Do not report low-level DDE errors
hcGetErrorAction

This command retrieves the behavior flag showing how errors will be acted
upon. The values returned are the same as the valuesheSdifzrrorAction

A Notification Example

Notification is a powerful capability associated with HyperChem. It allows
you to request a live link to HyperChem such that you are notified of any
change in an indicated variable or data structure. This allows many capabili-
ties that would not be possible otherwise. In particular, this makes it possible
to have very intimate connections between your custom capability and the
“guts” of HyperChem without getting into source code details. It is not
required to know the intimate details of how HyperChem operates but only
that it must be operating in certain ways. Thus, for example, one would know
that at the heart of optimizations are energy and gradient changes without
worrying about what specific algorithm is being used by HyperChem. You
can just ask to monitor these changes without having to dive into code, algo-
rithms, etc.

Most external Tcl scripts are identical with internal Tcl scripts. A notable
exception is that notifications cannot be processed by internal Tcl scripts
(HyperChem does not send messages to itself!). Notifications are normally
associated with external programs like Microsoft Excel, Word or Visual
Basic or external applications build in C, C++, and Fortan. If you intend to
build software in Tcl that requires notification, you will need to do it with
external Tcl/Tk. The example of this section is one that monitors and plots
values of any HSV that is of potential interest to you. A specific example
would be to monitor the energy or rms gradient of a structure optimization.

The Tcl script is executed from the Console as follows:

130

Chapter 10

A Notification Example

=10]]

The sourcecommand begins the executiontaftc1 file as the next com-

mand. In this case it isonitor. tcl which sets up a Tk window that look
as follows:

| fotabenergy

| e

The Tcl code for setting up this window can be investigated by looking at the
file installed from the CD-ROM but here we want to focus on the code asso-
ciated with the notifications. The code behind the button, “Start New Plot”
leaving out everything unessential to the naotifications is,

External Tcl/Tk Interface 131

A Notification Example

button .bts.plot -text "START NEW PLOT" -command {

if {$Prevhsv != -1} {
hcNotifyStop $Prevhsv

}

hcNotifyStart $hsv

set Prevhsv S$hsv

if {$IsMonitor == -1} {
monitor
set IsMonitor 1

When the button is pushed, any previous notifications are first cancelled.
Then a new natification is requested for the new HSV which shows in the
window as total-energy and which is stored in the value, $hsv. A call is then
made to a proc called monitor which will do the monitoring.

proc monitor {} {

global hsv interval
set name [hcGetNotifyData a]
if { $name == S$Shsv } {

<TAKE $A, THE TOTAL ENERGY POINT AND SAVE FOR PLOTTING>
}

monitor restarts after plotting

after $interval [list monitor]

}
The code associated with collecting and plotting the notification data has been
abstracted away. The monitoring is done by executing the comhnz@di-
NotifyData, to see if there really is any natification data available, i.e. the
command returns the name of the HSV being monitored. If there was a noti-
fication, it is dealt with. If not, or there was data and it has been dealt with, a
call is made to re-schedule a return to monitor after $interval milliseconds. In
general, this means the process now goes to sleep and wakes up later to see if
any notifications have arrived.

If you had connected the monitor example to HyperChem and then performed
an optimization, the graph displayed in the TK window might look something
like the following:

132 Chapter 10

A Notification Example

External Tcl/Tk Interface 133

A Notification Example

134 Chapter 10

Chapter 11

The HAPI Interface to HyperChem

Introduction

This chapter describes the HyperChem Application Programming Interface
(HAPI or HyperChem API), the system library developed by Hypercube to
simplify the task of communication with HyperChem. Instead of sending,
posting and processing Windows DDE messages, an application makes HAPI
calls and uses a set of functions provided by the API to manage the conversa-
tion between HyperChem and your external program. This is a high-level
replacement for communicating via a lower-level DDE call.

The HyperChem API performs the task of packing and unpacking the data
coming to and from messages so that arguments to HAPI calls can be in a
form that you are familiar with and calls to the HAPI library become a simple
extension to normal C or Fortran programming. The sophisticated error han-
dling built into the HyperChem API guarantees robustness of the communi-
cation. While it is possible for applications to communicate with HyperChem
without HAPI calls (as described in chapters 8 and 9, for example), it is not
the recommended procedure. The HAPI library is meant for users intending
to write their own sophisticated interfaces or back ends to the HyperChem
front end. Moreover, some applications, such as most Fortran programs run-
ning under Windows 95 and NT, cannot easily interface to HyperChem with-
out the HyperChem API.

Another reason for using the set of HAPI calls rather than DDE is the com-
patibility issue. There are indications that DDE may be replaced by another
communication paradigm (OLE Automation) in future versions of

Microsoft's operating systems. It thus might happen that Hypercube would
need to change its underlying communication protocol from DDE to another
messaging system in future releases of its HyperChem core product. Applica-
tions using the HAPI calls will preserve compatibility, while those that use a
lower-level DDE protocol might lose future compatibility.

135

Towards a Chemical Operating System

Towards a Chemical Operating System

The richness of HyperChem, evident in its HyperChem Command Language
(Hcl), its embedded Tcl/Tk interpreter, and its HAPI library of calls, is indic-
ative of a direction Hypercube is making towards a Chemical Operating Sys-
tem (The HyperChem OS). A picture of this system is as follows:

Tcl/Tk

Scripting HyperChem| | vy
and GUI Program
GUI

HAPI HAPI
Calls Calls

HyperChem OS

Microsoft Windows and NT

Hardware

In this picture we have divided HyperChem into the fundamental services
(building molecules, performing calculations, visualizing results, etc.) that it
supplies to its normal users (and can provide to your external program) and
the graphical user interface (GUI) that normal users use to get at these ser-
vices. These services are all available by making HAPI calls to the Hyper-
Chem “Operating System”.

The Components

The components of the HyperChem Application Programming Interface are:

» hc.h - This is the header file for C and C++ interfaces that define each of
the entry points for the HyperChem API.

The HAPI Calls

» hsv.h - This header file defines an integer corresponding to each HSV
and is needed if binary communication to HyperChem from C and C++
programs is to be used.

* hcload.c - This file contains the C code for the LoadHAPI routine that C
and C++ programs should call to load the HAPI calls before using them.
It generally is placed after the hc.h and hsv.h files in a C/ C++ program.

 HAPILDLL - This is the DLL that must get loaded to access the Hyper-
Chem API.

 HAPI.LIB - This is the file that could be linked with your C, C++ or For-
tran application as an alternative to calling LoadHAPI.

* hc.fi - The Fortran equivalent of hc.h as an include file to define the
HAPI calls of your program.

* hsv.fi - The Fortran equivalent of hsv.h. This file is a necessary include
file for your Fortran program if it is to attempt binary communication
with HyperChem.

» hapi.bas - The Visual Basic equivalent of hc.h as an include file to define
the HAPI calls of your program.

» hsv.bas - The Visual Basic equivalent of hsv.h. This file is a necessary
include file for your Visual Basic program if it is to attempt binary com-
munication with HyperChem.

The HAPI Calls

A complete and detailed documentation of each of the HAPI calls is given in
Appendix C. Here we briefly list the calls and describe the kinds of calls that
are in the library. These calls can be made from C, C++ Fortran, Visual,
Basic, or external Tcl/Tk programs among others. In some situations, e.g.
Tcl/Tk, the implemented set of calls is a subset of the full set.

In listing the calls below, we indicate their type and their arguments using a
C-like syntax. Further details are again available in Appendix C. The calls for
Fortran have the syntax, hfHAPICALL, the calls for Visual Basic have the
syntax, hbHAPICALL, whereas the calls for other language situations begin
with hc and have the syntax, hcHAPICALL.

The HAPI Interface to HyperChem 137

The HAPI Calls

Initialization and Termination

BOOL hclInitAPI (void)

This call is generally not needed in most contexts as initialization happens
automatically.

BOOL hcConnect (LPSTR IszCmd)

This call connects to HyperChem. A non-null string as an argument can be
used to connect to a specific instance of HyperChem.

BOOL hcDisconnect (void)
This call disconnects from HyperChem.
void hcExit(void)
This causes immediate termination of the calling application.
Discussion
The principal call of importance here is the one that connects to HyperChem.

Prior to connecting, however, the HAPI library must have been loaded. See
below how you should load the appropriate DLL or LIB file.

Text-based Basic Communication Calls

BOOL hcExecTxt (LPSTR script_cmd)

This sends an Hcl script command to HyperChem.

LPSTR hcQueryTxt (LPSTR var_name)
This queries an HSV in HyperChem.

Discussion

These are the text calls that send a command to HyperChem or perform a
Read/Write of a HyperChem State Variable (HSV). They correspond to calls
in the HyperChem Command Language (Hcl), i.e. they involve eitinena
invocation e.g. menu-file-open, @irect commange.g. do-molecular -
dynamics, atHSV write e.g. window-color green, or &5V reade.g. win-

138 Chapter 11

The HAPI Calls

dow-color ?. The reading of an HSV is performed by the call, hcQueryTxt,
while the other Hcl script commands are invoked by hcExecTxt.

Binary-based Basic Communication Calls

BOOL hcExecBin (int cmd, LPV args, DWORD args_length)

This is the binary form for sending an Hcl script command to HyperChem.

LPV hcQueryBin(int hsv, int indx1, int indx2, int* length)
This is the binary form for querying an HSV in HyperChem.

Discussion

The HyperChem Command Language is basically a text form for communi-
cating and exchanging data with HyperChem. For completeness and for effi-
ciency there is an equivalent binary form for all the Hcl script commands.
These can be much more effective and simpler to use in languages like For-
tran where one has to use character data to invoke normal script commands.
See the programming examples for examples of both text and binary based
communication with HyperChem.

With text based communication you use strings, like “window-color” and
“do-molecular-dynamics” to denote the HSV of interest or the direct com-
mand that you want to invoke. With binary versions of hcExec and hcQuery
you use an integer to denote the operation. The name of this integer has the
syntax, window_color or do_molecular_dynamics, for example, where an
underscore replaces the hyphen or minus sign of a Hcl text string. These inte-
gers are defined in hsv.h, hsv.fi, and hsv.bas for C and C++ Fortran, and
Visual Basic applications. Only text-based communication is available for
Tcl/Tk.

Binary Format

The binary form of a HAPI call results in a binary message being sent to
HyperChem rather than a simple text message. The format of these binary

messages is
Length* Binary Code Arguments**
4 bytes 4 bytes n-bytes

The HAPI Interface to HyperChem 139

The HAPI Calls

*To make the binary message different from a text message it is required to
set the highest bit of the first field to 1.

** Arguments are also coded as binary data.

The binary code for each command is the 4-byte integer number found in
hsv.h, hsv fi, or hsv.bas. The codes may change between different versions of
HyperChem. Three utility Tcl scripts are included on the HyperChem CD-
ROM, calledcgenhsv.tcl, fgenhsv.tcl, andbgenhsv.tcl that

are capable of generating the correct hsv.h, hsv.fi, and hsv.bas files for the
version of HyperChem that you are using.

To issue a binary command the user uses, for example:

result=hcExecBin (hsv,arg, length) ;

in a C/C++ program, or

result=hfExecBin (hsv,arg, length)

in a Fortran program.

Binary-based Get Integer Calls

int hcGetlnt (int hsv)

This call gets the binary value of an integer HSV.

int hcGetIntVec(int hsv, int* buff, int max_length)

This call gets all the binary values of an integer vector HSV into a buffer.

int hcGetIntArr (int hsv, int* buff, int max_length)

This call gets all the binary values of an integer array HSV into a buffer.

int hcGetIntVecEIm (int hsv, int index)

This call gets a single binary element of an integer vector HSV.

int hcGetIntArrEIm (int hsv, int atom_index, int mol_index)

This call gets a single binary element of an integer array HSV.

140 Chapter 11

The HAPI Calls

Discussion

These calls are specialized forms of hcQueryBin specific to integer variables,
vectors, and arrays. One form gets the whole vector or array at once while the
other form (EIm) gets only a single element at once.

Binary-based Get Real Calls

double hcGetReal (int hsv)

This call gets the binary value of a real HSV.

int hcGetRealVec(int hsv, double* buff, int max_length)

This call gets all the binary values of a real vector HSV into a buffer.

int hcGetRealArr (int hsv, double* buff, int max_length)

This call gets all the binary values of a real array HSV into a buffer.

double hcGetRealVecEIm (int hsv, int index)

This call gets a single binary element of a real vector HSV.

double hcGetRealArrEIm (int hsv, int atom_index, int mol_index)

This call gets a single binary element of a real array HSV.

int hcGetRealVecXYZ (int hsv, index, double* x, double* y,
double* z)

This call gets the three real values of a single element of a real array HSV.
The three real values are normally the Cartesian components of a real variable
such as a dipole moment, etc.

int hcGetRealArrXYZ (int hsv, int atom_index, int mol_index,
double* x, double* y, double* z)

This call gets the three real values of a single element of a real array HSV.
The three real values are normally the Cartesian components of a real variable
such as a coordinate, etc.

The HAPI Interface to HyperChem 141

The HAPI Calls

Discussion

These calls are specialized forms of hcQueryBin specific to real variables,
vectors, and arrays. One form gets the whole vector or array at once while the
other form (EIm) gets only a single element at once. The XYZ forms are spe-
cific to Cartesian values.

Binary-based Get String Calls

int hcGetStr (int hsv, char* buff, int max_length)

This call gets a string corresponding to all values of the HSV.

int hcGetStrVecEIm (int hsv, int index, char* buff, int max_length)

This calls gets a string corresponding to a particular element of a vector.

int hcGetStrArrEIm (int hsv, int atom_index, int mol_index, char*
buff, int max_length)

This call gets a string corresponding to a particular element of an array.
Discussion
These calls correspond very closely to the text based calls in that they convey

arguments as a string. However the HSV is represented as a binary integer not
as a string.

Binary-based Set Integer Calls

int hcSetint (int hsv, int value)

This call sets the binary value of an integer HSV.

int hcSetIntVec(int hsv, int* buff, int length)

This call sets length binary values of an integer vector HSV into a buffer.

int hcSetintArr (int hsv, int* buff, int max_length)

This call sets length binary values of an integer array HSV into a buffer.

142 Chapter 11

The HAPI Calls

int hcSetintVecEIm (int hsv, int index, int value)

This call sets a single binary element of an integer vector HSV.

int hcSetIntArrEIm (int hsv, int atom_index, int mol_index, int
value)

This call sets a single binary element of an integer array HSV.

Discussion

These calls are specialized forms of hcExecBin specific to writing HSV's for
integer variables, vectors, and arrays. One form sets the whole vector or array
at once while the other form (EIm) sets only a single element at once.

Binary-based Set Real Calls

int hcSetReal (int hsv, double value)

This call sets the binary value of a real HSV.

int hcSetRealVec(int hsv, double* buff, int length)

This call sets length binary values of a real vector HSV into a buffer.

int hcSetRealArr (int hsv, double* buff, int length)

This call sets length binary values of a real array HSV into a buffer.

int hcSetRealVecEIm (int hsv, int index, double value)

This call sets a single binary element of a real vector HSV.

int hcSetRealArrElm (int hsv, int atom_index, int mol_index,
double value)

This call sets a single binary element of a real array HSV.

int hcSetRealVecXYZ (int hsv, index, double x, double y, double z)

This call sets the three real values of a single element of a real array HSV. The
three real values are normally the Cartesian components of a real variable
such as a dipole moment, etc.

The HAPI Interface to HyperChem 143

The HAPI Calls
int hcSetRealArrXYZ (int hsv, int atom_index, int mol_index,
double x, double y, double z)

This call sets the three real values of a single element of a real array HSV. The
three real values are normally the Cartesian components of a real variable
such as a coordinate, etc.

Discussion

These calls are specialized forms of hcExecBin specific to writing HSV’s for
real variables, vectors, and arrays. One form sets the whole vector or array at
once while the other form (EIm) sets only a single element at once. The XYZ
forms are specific to Cartesian values.

Binary-based Set String Calls

int hcSetStr (int hsv, char* string)

This call sets an HSV to the value of a string.

int hcSetStrVecEIm (int hsv, int index, char* string)

This call sets a particular element of an HSV vector to a string.

int hcSetArrEIm (int hsv, int atom_index, int mol_index, char*
string)

This call sets a particular element of an HSV array to a string.

Discussion

These calls correspond very closely to the text based calls in that they convey
arguments as a string. However the HSV is represented as a binary integer not
as a string.

Get and Set Blocks

int hcGetBlock (int hsv, char* buff, int max_length)

This call gets all the data, irrespective of type, corresponding to an HSV.

144 Chapter 11

The HAPI Calls

int hcSetBlock (unt hsv, char* buff, int length)

This call sets an HSV, irrespective of its type from a buffer.

Discussion

These calls do block copies of data associated with an HSV of any type.

Notification Calls

int hcNotifyStart (LPSTR hsv)

This call requests a notification for an HSV.

int hcNotifyStop (LPSTR hsv)

This call terminates a request for notification of an HSV.

int hcNotifySetup (PFNB pCallBack, int NotifyWithText)

This call establishes how notifications are to be handled.

int hcNotifyDataAvail (void)

This call determines whether a notification is available.l

int hcGetNotifyData (char* hsv, char* buff, int max_length)

This call gets the data associated with a notification on an HSV.

Discussion

These calls are associated with notifications.

Memory Allocation

void * hcAlloc (size_t, n_bytes)

This allocates memory associated with the HAPI but is not recommended to
replace the normal user memory allocation routines.

The HAPI Interface to HyperChem 145

The HAPI Dynamic Link Library (HAPI.DLL)

hcFree (void* pointer)

This frees memory allocated with hcAlloc or after processing data from
hcQueryTxt and hcQueryBin which allocate memory for the result of the
query.

Discussion

These calls are for memory allocation and deallocation associated with the
HAPI.

Auxiliary Calls

void hcShowMessage (LPSTR message)

This call displays a message box with the message provided.

void hcSetTimeouts (int ExecTimeout, int QueryTimeout, int
OtherTimeout)

This call sets timeouts for hcExec, hcQuery, and other HAPI calls.
int hcLastError (char* LastErr)

This call enquires about the last error.

int hcGetErrorAction (void)

This call asks how errors are currently being handled.

void hcSetErrorAction (int err)

This call sets how errors are to be handled.

Discussion

Further details on these calls are available in Appendix C.

The HAPI Dynamic Link Library (HAPIL.DLL)

The HyperChem Application Programming Interface (HAPI), forms a set of
system calls that can be utilized by an application to perform certain tasks in
conjunction with HyperChem. It is somewhat analogous to the Microsoft

146 Chapter 11

How to use the HyperChem API

Windows API and is implemented in a similar way, through a dynamic Link
Library (DLL).

The whole Microsoft Windows operating system is seen by a user program as
an API - the Microsoft Windows 32-bit API for Windows 95 and NT. For
example, this means that a user writing code in C can utilize all Microsoft’s
system calls that form the API. In addition to the generic Windows API there
are specific API's, such as the WINSOCK API - the library that defines
TCP/IP communication for Windows applications. Usually, a Microsoft API

is provided to users in a form of a DLL.

A Dynamic Link Library is specific to Microsoft Windows and NT and as a
library has one important feature: it can be linked to the user program at run-
time. In most cases, it can also be linked while the application is loaded into
memory (load time). At run-time, however, it can be loaded any time during
program execution, as well as unloaded when it is no longer required. This
feature is of great importance, as it provides both users and developers a pain-
less method of improving upon both the standard Microsoft APl and an appli-
cation specific API.

The HyperChem API (HAPI) has been developed as a 32-bit DLL that is
compatible with Microsoft Windows 95, Microsoft NT and Microsoft's
W32S 32-bit subsystem for Windows 3.1. Thus, it can be used with all the
programming tools that call 32-bit DLLs including almost all modern C/C++
and Fortran compilers, 32-bit versions of Microsoft Visual Basic, and tools
like the Tcl/Tk interpreter, Microsoft Excel, Borland’s Delphi, etc.

How to use the HyperChem API

To make the HyperChem API available to your application, you must have
the requisite header files, load the HAPI.DLL properly, and then make a
proper connection of your program to HyperChem. Alternatively, it is possi-
ble to use a library file, HAPI.LIB, link it with your application and use load-
time dynamic linking. Though it is possible for you to make use of he Hyper-
Chem API with a variety of compilers and development systems through
intelligent use of these tools, inspecting our header files, etc., we believe it
makes sense to illustrate the tools very explicitly with a very small variety of
standard environments. Thus, we have chosen to provide standard interface
source code along with the CDK so that at least for certain environments an
interface to HyperChem becomes very straight-forward. We have chosen the
following to illustrate the HyperChem API:

e - Microsoft 32-bit C/C++ compilers (from Visual C++ 4.0)

The HAPI Interface to HyperChem 147

How to use the HyperChem API

* - Microsoft Power Station Fortran compiler (version 4.0 and higher)
* - Microsoft Visual Basic 4.0

e - Tcl/Tk implemented as a 32-bit “wish41” Windows application

Nevertheless, if you must interface to the HyperChem API from another type
of application, you can use the information in this section combined with each
function’s header information to write your own code to call the API. Such a
situation might happen when you want to use other tools such as Borland
Delhi, for example.

Accessing the HyperChem API from C/C++ code

Run-Time Dynamic Linking

The method for accessing a function in the HAPI depends on the program-
ming language used. For C/C++ programs, the easiest method is to include
the providechcload.c source code just after including the main header
file, hc.h. The typical sequence is as follows:

#include "hc.h"
#include "hcload.c"

Alternatively, instead of includingcload. c into each module of the larger
application it may be convenient to link the application wittl oad . obj
during a static linkage phase. In this case the program only needs:

#include "hc.h"

The correspondingmakefilé (or project workspace) would have the form:

N O T R B A RS H SR SR S R A RS S R R RS
#+ EXAMPLE make file +
T T L B B B A

userapp.exe : userapp.obj hcload.obj
$ (LINKER) $(GUIFLAGS) -OUT:userapp.exe userapp.obj hcload.obj
$ (GUILIBS)

userapp.obj : userapp.c
$(CC) $(CFLAGS) step0l.c

hcload.obj : hcload.c
S (CC) $(CFLAGS) hcload.c

148 Chapter 11

How to use the HyperChem API

In the environment of the Microsoft Developer Studio, the corresponding
action would be to insefiic1oad. c as another source file among the user’s
files, i.e. by using the menu item, <Insert/Files into Project...>.

Within your source code one of the first things to do is to dynamically load,
or activate the library. Your program has to call the LoadHAPI function
defined inhcload. c. A typical sequence would be:

/* loading HAPI.DLL */

if (!LoadHAPI ("hapi.dll")) {

MessageBox (hwnd, "Error loading HAPI.DLL",

"Error",MB OK | MB ICONSTOP) ;

exit (0);

}
The LoadHAPIcall takes one parameter which is a file name, HAPI.DLL.
Note that the DLL can be placed in the local directory, but the most appropri-
ate place is the main Windows system directory (usually C: \WINDOWS).
LoadHAPIactivates each of the functions in the DLL by making repetitive
calls toGetProcAddresdghe function provided by Microsoft to get the
address of the corresponding function in the DLL:

hcExecTxt=(T_hcExecTxt*)GetProcAddress (hinst, "hcExecTxt") ;
if (hcExecTxt == NULL) res=_hcLoadError ("hcExecTxt", szN) ;

This method utilized by LoadHAPI is called Run-Time Dynamic Linking.

Load-Time Dynamic Linking

There is another method to link HAPI with a user application. It uses Load-
Time Dynamic Linking and requires direct linking of the user program with
the library file (HAPI.LIB) provided with the CDK. This file contains no code
but contains all of the API function headers and proper initialization code.
You can use load-time linking by inserting HAPI.LIB as one of the libraries
into a project, i.e. by the menu command, < Insert/Files into Project>, or by
writing an appropriate makefile when working outside of the Microsoft
Developer Studio (using a DOS command shell for compilation).

In either cases the application still needs:
#include "hc.h"
However, with load-time linking, all the HAPI functions are available for

calling as soon as the application starts. There is no need fordtelAPI
call.

The HAPI Interface to HyperChem 149

How to use the HyperChem API

If you are making binary calls, it is necessary to have:

#include “hsv.h”

Accessing the HyperChem API from Fortran code

To use the HAPI calls from Fortran programs you have to translate Fortran-
style calls into the appropriate system calls to the HAPI. With Microsoft
Power Station Fortran it suffices to just include the fite;. £i, provided

with the CDK and then statically link in HAPL.LIB. The codeiin. £i has

to be included in all functions and subroutines that use HAPI calls. For exam-
ple:

subroutine ExeTest
character*100 cmd
common /flags/flagfile, fconnected
logical res,flagfile, fconnected
include "hc.fi"

1 write(*,*)' Script command to execute (0 - returns) ->'
read(*, "' (A) ") cmd
if (cmd.eq.'0') return
res=hfExecTxt (cmd)
write(*,*)' hfQueryTxt returns: ', res
goto 1
end

What does the source inside . £1 look like and do? It provides an INTER-
FACE (a Fortran capability of Microsoft Fortran Power Station), so the For-
tran compiler can type-check all function parameters and issue the proper
calling sequences. The source looks as follows:

INTERFACE

logical function hfInitAPI ()
'ms$SATTRIBUTES DLLIMPORT,ALIAS: '_hCInitAPI@O' :: hfInitAPI
end function hfInitAPI

150 Chapter 11

How to use the HyperChem API

logical function hfConnect (init string)
!msSATTRIBUTES DLLIMPORT,ALIAS: ' hfConnect@8' :: hfConnect
character* (*) init string
end function hfConnect

logical function hfDisconnect ()
!msSATTRIBUTES DLLIMPORT,ALIAS: ' hcDisconnect@0' :: hfDisconnect
end function hfDisconnect

subroutine hfExit ()
Ims$SATTRIBUTES DLLIMPORT,ALIAS: '_thxit' :: hfExit
end subroutine hfExit

o
o
c Text Query & Execute functions
o
logical function hfExecTxt (script cmd)
!ms$SATTRIBUTES DLLIMPORT,ALIAS: '_thxeCTxt@8' :: hfExecTxt
character* (*) script cmd
Ims$SATTRIBUTES REFERENCE :: Script_cmd
end function hfExecTxt
logical function hfQueryTxt (var name, res)
character* (*) var name, res
IMSSATTRIBUTES reference :: var name
IMSSATTRIBUTES reference :: res
!ms$SATTRIBUTES DLLIMPORT,ALIAS: '_thueryTxt@l6' :: hfQueryTxt
end function hfQueryTxt
e
integer function hfLastError (error)
!ms$SATTRIBUTES DLLIMPORT,ALIAS: '_hCLaStError@4' :: hfLastError
Ims$SATTRIBUTES C,REFERENCE :: error

character *(*) error
end function hflLastError

integer function hfGetErrorAction ()

Ims$SATTRIBUTES

DLLIMPORT,ALIAS:' hcGetErrorAction@O'::hfGetErrorAction
end function hfGetErrorAction

The HAPI Interface to HyperChem 151

How to use the HyperChem API

subroutine hfSetErrorAction (action)

ImsSATTRIBUTES
DLLIMPORT,ALIAS:' hcSetErrorAction@4'::hfSetErrorAction
'ms$SATTRIBUTES VALUE :: action

integer action

end subroutine hfSetErrorAction

c end of hc.fi

END INTERFACE

If you are making binary calls, it is also necessary to have:

include “hsv.fi”

Accessing the HyperChem API from Visual Basic Code

While it is relatively straight forward for Visual Basic programs to commu-
nicate with HyperChem via DDE as described in Chapter 9, it may be desir-
able to use the HyperChem APl and HAPI.DLL from Visual Basic for similar
reasons to that described above for C, C++ and Fortran. It is possible to do
so with the principal requirement being the need to have two files,
hapi.bas andhsv.bas that define the interface to the HAPI.DLL The
following is a portion of théapi . bas file,

Attribute VB Name = "Modulel"

Declare Function hbInitAPI Lib "hapi.dll" Alias “hcInitAPI” () As Long

Declare Function hbConnect Lib "hapi.dll" Alias “hcConnect” (ByVal
command As String) As Long

Declare Function hbDisconnect Lib "hapi.dll" Alias “hcDisconnect” ()
As Long

Declare Sub hbExit Lib "hapi.dll" Alias “hcExit” ()

Declare Function hbExecTxt Lib "hapi.dll" Alias “hcExecTxt” (ByVal
script cmd as string) As Long

Declare Function hbExecBin Lib "hapi.dll" Alias “hcExecBin” (ByVal
cmd as Long, ByRef args as Long,
ByVal args length as Long) As Long

152 Chapter 11

How to use the HyperChem API

Declare Function hcQueryTxt Lib "hapi.dll" (ByVal command As String)
As String

Declare Function hfQueryBinLib "hapi.dll" (ByVal var,indxl,
indx2 as integer, ByRef result as integer,
ByRef cblL as integer) As Integer

The Visual Basic application, DLA, which is on the HyperChem CD-ROM,
is an example of a Visual Basic application that uses HAPI calls.

Accessing the HyperChem API from Tcl/Tk code

A description of this interface is given in Chapter 10. Only text-based com-
munication is supported. Notifications are processed by the Notification
Agent.

Considerations for Console-based Applications

A “Console application” is a new application type available for Windows 95
and Windows NT operating systems. It is an implementation of the popular
text-based terminal environment well known in the UNIX world. Such a pro-
gram uses a regularain()function as an entry point, rather thatnMain().
Instead of communicating with the user through a GUI , the console applica-
tion simplywritesto the screen using the regutaintf call andreadsusing
thescanfcall. Thisis for C code. In Fortran the familaite, print,andread

calls are available.

But the real differences between GUI-based and Console-based applications
are much larger than just input/output. All regular Windows application are
event-driverapplications, where all processing is performed by reacting to
incoming messages or events, generated by the operating system. This makes
writing Windows programs a difficult task for most traditional programmers
with a so called top-down or serialized view of programming. This represents

a new paradigm for programming that is not in the experience of most UNIX-
style programmers.

The console interface makes the conversion of programs from UNIX to Win-
dows easy and painless. Now, under Windows 95 and NT, almost all older
UNIX C and FORTRAN programs can be compiled without problems and
without severe modifications to the code. The underlying POSIX-compatible
system calls layer, available for Windows NT, makes the porting to NT of a
large number of “legacy” applications possible.

The HAPI Interface to HyperChem 153

How to use the HyperChem API

However, because console applications are not event-driven, Microsoft
decided to insulate them from certain features of Windows. Particularly, there
is no possibility for an application to be called via regular DDE callback func-
tions. In practice, DDE communication can be used by the console applica-
tion, as long as there is no need for the applicatitre calledhrough a DDE
Callback function. However, this “callback” feature is mandatory to receive
notifications from HyperChem about the change in an HSV variable.

The Notification Agent

To work around this, HyperCube, has implemented “The Notification
Agent”. The agent is another thread of execution (both Win95 & NT are real
multithreading applications) that does the following:

Starts a regular Windows procedure (analogowgitdMain) by register-
ing the window class and definingdndProctype of function that can
process all windows messages.

The agent then opens its own DDE communication with HyperChem.

The agent registers and processes notifications and allocates its own
buffers when necessary.

Each notification results in buffer allocation up to the limit of memory
resources.

The notification buffers are freed when a user copies their contents into
their own memory.

The user application access the buffers which form very simple linked
list using only two functions:

From a C Program:

DWORD stdcall hcNotifyDataAvail ()

DWORD stdcall hcGetNotifyData(char* name, char *buffer, DWORD

MaxBuffLength)

From a Fortran program:

integer function hfNotifyDataAvail ()
integer function hfGetNotifyData (name, result,res length)

154 Chapter 11

Examples of HAPI Calls

» The firstinforms the caller if there is some data that has came in as a noti-
fication message. The second copies the top-most buffer into the user
program, deallocating the buffer.

» The proper accessing by the notification agent and your user program of
a critical section of storage (the buffer area and control area) is handled
by use of semaphores, making the whole solution very robust. Tests
made under both Windows 95 and NT have shown the proper handling
of data without any loss of incoming messages, irrespective of their size.

The notification agent is useful also for those applications that cannot define
a callback (like a regular Tcl/Tk scripting application). It is also the method
used by HyperChem to avoid an event-driven programming paradigm in con-
sole applications, particularly.

Examples of HAPI Calls

C, C++

Text-based

int result;

result = hcExecTxt (“do-molecular-dynamics”) ;
result = hcExecTxt (“menu-file-open”);

result = hcExecTxt (“dipole moment 2.5”);

Binary-based

int result;

double value;

value = 2.5;

result = hcExecBin (do molecular dynamics);
result hcExecBin (menu file open);

result = hcExecBin (dipole moment, &value, 8);

Fortran

Text-based

integer result
result = hfExecTxt (‘do molecular dynamics’)

The HAPI Interface to HyperChem

155

Examples of HAPI Calls

result hfExecTxt (‘menu-file-open’)
result = hfExecTxt (‘dipole-moment 2.5')

Binary-based

integer result

double precision value

value = 2.5

result = hfExecBin (do _molecular dynamics)
result = hfExecBin (menu file open)

Visual Basic

Text-based

Dim result As Long

result = hbExecTxt (“do molecular dynamics”)
result = hbExecTxt (“menu-file-open”)

result = hbExecTxt (“dipole-moment 2.5")

Binary-based

Dim result As Long

Dim value As Double

value = 2.5

result = hbExecBin (do _molecular dynamics)
result hbExecBin (menu_file open)

result = hbExecBin (dipole moment, value, 8)

156 Chapter 11

Chapter 12

Development Using the Windows API

Introduction

This chapter describes the development of “Standard” Windows programs
that interface with HyperChem. By standard we mean that these programs are
written in C and use the lower-level approach of calling the Windows Appli-
cation Programming Interface (API) directly. Such programs are said to be
developed with the System Developer Kit (SDK). This contrasts with the next
chapter which describes development of Windows programs using C++ and
the Microsoft Foundation Classes. The SDK is in some senbatthevayto

do Windows programming but it is also the most basic and flexible way to
build a Windows program and most of the commercial Windows applications
you will encounter have been written in the following fashion.

Microsoft Development Tools

The interfacing examples of these next few chapters assume that you have
access to certain Windows development tools. While much of what we
describe is generic to a selection of compilers and programming environ-
ments, we have specifically used Microsoft's tools in all of our examples.
Thus, this chapter and the next make use of the C and C++ compilers of
Microsoft Visual C++, version 4.0, for 32-bit development. We have used

this compiler for HyperChem Release 5.0. The information needed to inter-
face your program to HyperChem is fundamentally independent of the spe-
cific Windows tools used, but there may be small changes necessary to adapt
to your specific tool set if you are not using Visual C++ 4.0.

Programming Assistance

This manual is certainly not a programming manual for Windows but you
may need one. With the entering of any new area of endeavor, it is comforting
to have the right information and assistance from experts. If you are new to

157

A First Example

Language

the type of programming illustrated in this chapter, we very strongly recom-
mend that you get a copy of the following book,

Programming Windows
Charles Petzold and Paul Yao
ISBN 1-55615-676-6
Microsoft Press, 1996

This is a new version of the programming classic by Charles Petzold. Since
Windows NT programming is very similar to that for Windows 95, it is an
appropriate book for NT development as well. There is an assumption in this
manual that you are probably a UNIX programmer. The Petzold book is an
excellent way for you to approach programming for Windows and NT and we
highly recommend it. A great deal has been written about programming for
Windows and there exist other fine reference books as well.

This chapter uses the C language and the next chapter uses C++, rather than
Fortran, which is generally much more familiar to scientific programmers and
may be your language of choice. In Chapter 14 we describe how to write so-
calledconsoleprograms in Fortran that can be interfaced to HyperChem.
However, for writing anormal Windows program that has a graphical user
interface, visualization, etc., Fortran is somewhat problematic and C or C++
are much to be preferred for normal Windows programming. With the Chem-
ist's Developer Kit, C, C++ and VB are the languages that we anticipate you
will be using for true “Windows-like” development. Any of the four lan-
guages, C, C++ VB, and Fortran are appropriate for the “character-like” pro-
gramming common to most large computational chemistry modules.

A First Example

The first programming example will again be our “Red and Green” example
which is the equivalent in this manual to the common “Hello World” pro-
gramming examples that you probably have seen elsewhere.

This example is referred to as Colors and will be in its own Colors directory
from the HyperChem CD-ROM. It is assumed that you have installed Visual
C++ 4.0 and that you are working from a DOS box in Windows 95. The first
thing that you must do, as with other programming examples from this chap-
ter, is to go to the proper directory and execute MSC.BAT to configure your
environment for the Microsoft compiler.

158

Chapter 12

A First Example

1. Change to the COLORS directory
2. Type MSC.BAT

If you have any trouble with running out of environment space, click on the
Properties tool in the DOS-box tool bar to increase the amount of environ-
ment memory. You are now ready to compiletha&.oRS . C file and create

the executable. Typ&MAKE. You should see your program being compiled
and the executableOLORS . EXE being created. Make sure HyperChem is
running and then execut®LORS . EXE. That is,

3. Type NMAKE
4. Make sure HyperChem is running
5. Type COLORS to execute COLORS.EXE

You could do this last step by typin@LoRS in your DOS box or by double
clicking on the Colors icon inside the Explorer or by having HyperChem exe-
cute the script OLORS . SCR which simply has in it the Hcl script command,
execute-HyperChem-client colors.eX®u should then see the following
Windows Application on the screen:

| Colors -0 x|

window-color = Green

Red

Green

If you push the Red button, the HyperChem background window color will
turn red. If you push the Green button, it will turn green. The text above the
buttons indicates the current color of the HyperChem window, if its last
change came from the external application, Colors. If you change the window
from the <File/Preferences...> dialog box within HyperChem, the external
application will not know about the change (a notification operation is neces-
sary for this).

The code for this Windows application is shown below. It is a completely
standard “boiler-plate” windows code except for the text shown in bold.

Development Using the Windows API 159

A First Example

/*
Window Colors - SDK program to connect and talk to HyperChem
*/
#include <windows.h>
#include "hc.h"
char cmd line[120];
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)
{

static char szAppName[] = "Colors"

HWND hwnd ;

MSG msg ;

WNDCLASSEX wndclass ;

int windowx,windowy;

wndclass.cbSize = sizeof (wndclass) ;

wndclass.style = CS_HREDRAW | CS VREDRAW ;
wndclass.lpfnWndProc = WndProc ;

wndclass.cbClsExtra =0 ;

wndclass.cbWndExtra =0 ;

wndclass.hInstance = hInstance ;

wndclass.hIcon = LoadIcon (NULL, IDI APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE BRUSH)
wndclass.lpszMenuName = NULL ;

wndclass.lpszClassName = szAppName ;

wndclass.hIconSm = LoadIcon (NULL, IDI APPLICATION) ;

RegisterClassEx (&wndclass) ;
lstrcpy(cmd line,szCmdLine) ;
windowx=200;
windowy=175;
hwnd = CreateWindow (szAppName, "Colors",
WS OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_ USEDEFAULT,
windowx,
windowy,
NULL, NULL, hInstance, NULL) ;
ShowWindow (hwnd, iCmdShow) ;
UpdateWindow (hwnd) ;
while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

’

160 Chapter 12

A First Example

}

return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,

{

LPARAM l1lParam)

static HWND hwndButton[2] ;
static RECT rect ;
static int cxChar, cyChar ;

HDC

hdc ;

PAINTSTRUCT ps ;
TEXTMETRIC tm ;
static char szBuff[200], szInitColor[50];

char

int

*response;
result;

static int connected=FALSE;

switch

{

(iMsg)

case WM _CREATE

hdc = GetDC (hwnd) ;

SelectObject (hdc,GetStockObject (SYSTEM FIXED FONT)) ;
GetTextMetrics (hdc, &tm) ;

cxChar = tm.tmAveCharWidth ;

cyChar = tm.tmHeight + tm.tmExternallLeading ;
ReleaseDC (hwnd, hdc) ;

hwndButton[0]=CreateWindow ("button", "Red",
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
7*cxChar, 3*cyChar, 10*cxChar, 2*cyChar,
hwnd, (HMENU)O,
((LPCREATESTRUCT) lParam) -> hInstance,
NULL) ;

hwndButton[l]=CreateWindow ("button", "Green",
WS_CHILD | WS_VISIBLE | BS_ PUSHBUTTON,
7*cxChar, 6*cyChar, 10*cxChar, 2*cyChar,
hwnd, (HMENU) 1,
((LPCREATESTRUCT) lParam) -> hInstance,
NULL) ;

return 0;

caseWM SHOWWINDOW
if ('connected)

{

Development Using the Windows API 161

A First Example

/* loading CDK API DLL */

if ('LoadHAPI ("hapi.dll"))

{

MessageBox (hwnd, "Error loading CDK's API DLL !",
"Error", MB_OK | MB_ICONSTOP);

exit (0) ;

}

/* connecting to HyperChem */

if ('hcConnect(cmd line))

{

MessageBox (hwnd, "Error connecting with HyperChem !",
"Error", MB OK | MB ICONSTOP) ;

exit (0) ;

}

else

{

connected=TRUE ;

}

/* obtaining initial window-color from HyperChem */

response=hcQueryTxt ("window-color") ;

lstrcpy (szInitColor, response) ;

hcFree (response) ;

wsprintf (szBuff,"%$s",szInitColor) ;

}

return O;

case WM PAINT

InvalidateRect (hwnd, &rect, TRUE) ;

hdc = BeginPaint (hwnd, &ps) ;

SelectObject (hdc, GetStockObject (SYSTEM FIXED FONT)) ;
SetBkMode (hdc, TRANSPARENT) ;

TextOut (hdc, cxChar, cyChar,szBuff,lstrlen(szBuff)) ;
EndPaint (hwnd, &ps) ;

return 0 ;

case WM DRAWITEM
case WM_COMMAND

hdc = GetDC (hwnd) ;
SelectObject (hdc, GetStockObject (SYSTEM FIXED FONT)) ;
switch (LOWORD (wParam)) {
case 0
wsprintf (szBuff, "window-color = Red");
result=hcExecTxt (szBuff) ;

162 Chapter 12

Modification of a Molecule’s Coordinates

break;
case 1
wsprintf (szBuff, "window-color = Green") ;
result=hcExecTxt (szBuff) ;
break;

default : ;
}
/*TextOut (hdc, cxChar, cyChar,
szBuff,lstrlen (szBuff));*/
ReleaseDC (hwnd, hdc) ;
InvalidateRect (hwnd, NULL, TRUE) ;
break ;

case WM _DESTROY

result=hcExecTxt (szInitColor) ;
result=hcDisconnect() ;
PostQuitMessage (0) ;

return 0 ;

}

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

The changes to a standard version of the WinMain routine, as used by all
Windows programs, are very minimal. the only changes are to include a
header file, hc.h, to change the size of the window to a smaller than normal
value, to save the invoking command line for potential use, and to change the
name of the main window to Colors.

The changes to WndProc, the callback procedure, are more extensive. This is
the routine that contains the code you get to execute when certain events
occur. ltis, of course, very application dependent although all Windows pro-
grams have a similar basic outline.

Modification of a Molecule’s Coordinates

The next example that we demonstrate and explain is one which has a very
fundamental capability similar to many programs that you might wish to
write. That is, this program gets a molecule and its coordinates from Hyper-
Chem, modifies these coordinates in some fashion and returns them to Hyper-
Chem for continuous display. A more elaborate example might extend this
program to perform a geometry optimization, to execute a molecular dynam-

Development Using the Windows API 163

Modification of a Molecule’s Coordinates

ics, trajectory, etc. Once again the modifications from a standard Windows
program are denoted in bold face type.

/*

* C_API Examples***

* Rotation - program to demonstrate *

* modification of coordinates in the HyperChem workspace *

R I I db b 2R I b S Ib b b dh Ib b S Ib b b 2h Ib b S Ib b b db Sb b S 3b b db Ib b Jb Ib b b db Ib b S db b d Sb Ib b J Ib b 4b 30 Ib b db 9b 4
*/

#include <windows.h>

#include <math.h>

#include <stdio.h>
#include "hc.h"
#include "hsv.h"
char cmd 1line[100];

static char *Label[] = {"Step Size",

"Total Steps"};

#define CW(1l) cxChar*(lstrlen(l)+1)
#define MAX BUFF 200

typedef struct _ATM COORDS { double x,y,z; } ATM COORDS;

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
PSTR szCmdLine, int iCmdShow)

{

static char szAppName[] = "Rotate"
HWND hwnd ;
MSG msg ;

WNDCLASSEX wndclass ;
int windowx,windowy;

wndclass.cbSize = sizeof (wndclass) ;
wndclass.style = CS_HREDRAW | CS VREDRAW ;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra =0 ;

wndclass.cbWndExtra =0 ;

wndclass.hInstance = hInstance ;

wndclass.hIcon LoadIcon (NULL, IDI APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC ARROW) ;
wndclass.hbrBackground= (HBRUSH) GetStockObject (COLOR BACKGROUND) ;
wndclass.lpszMenuName = NULL ;

wndclass.lpszClassName = szAppName ;

wndclass.hIconSm LoadIcon (NULL, IDI APPLICATION) ;
RegisterClassEx (&wndclass) ;

lstrcpy(cmd_line,szCmdLine) ;

164 Chapter 12

Modification of a Molecule’s Coordinates

windowx=280;
windowy=200;
hwnd = CreateWindow (szAppName, "Rotate",
WS OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_ USEDEFAULT,
windowx,
windowy,
NULL, NULL, hInstance, NULL) ;
ShowWindow (hwnd, iCmdShow) ;
UpdateWindow (hwnd) ;
while (GetMessage (&msg, NULL, 0, 0))
{
TranslateMessage (&msg)
DispatchMessage (&msg) ;
}
return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg,
WPARAM wParam, LPARAM l1lParam)
{
static HWND hwndButton[l],hwndLabel[2] ,hwndEdit[2] ;
static RECT rect ;
static int c¢xChar, cyChar ;
HDC hdc ;
TEXTMETRIC tm ;
HINSTANCE hins;
static char szBuff[MAX BUFF],szInitColor[50];

int result,i;

static int connected=FALSE;

static ATM COORDS *org Xyz,*new_xyz;
static int nMol, *nAtm,nAtmTot;

double dRot, rAng, rCos,rSin;

int nRot,ia;

switch (iMsqg)
{
case WM CREATE
hdc = GetDC (hwnd) ;
SelectObject (hdc, GetStockObject (SYSTEM FIXED FONT)) ;
GetTextMetrics (hdc, &tm) ;
cxChar = tm.tmAveCharWidth ;
cyChar tm.tmHeight + tm.tmExternalleading ;

Development Using the Windows API 165

Modification of a Molecule’s Coordinates

ReleaseDC (hwnd, hdc) ;
hins=((LPCREATESTRUCT) lParam) -> hInstance;

hwndLabel[0]=CreateWindow ("static",

Label[O0],

WS CHILD | WS VISIBLE,

2*cxChar,

3*cyChar,

_CW(Label[O0]),

2*cyChar,

hwnd, (HMENU) 101, hins, NULL) ;
hwndEdit[0]=CreateWindow ("edit",

NULL,

WS CHILD | WS VISIBLE | WS BORDER | ES LEFT,

2*cxChar,

(int) (4.5*cyChar),

10*cxChar,

7*cyChar/4,

hwnd,

(HMENU) 200 ,hins, NULL);
hwndLabel[l]=CreateWindow ("static",

Label[1l],

WS _CHILD | WS _VISIBLE,

22*cxChar,

3*cyChar,

_CW(Label[l]),

2*cyChar,

hwnd, (HMENU) 102, hins, NULL);
hwndEdit[l]=CreateWindow ("edit",

NULL,

WS CHILD | WS VISIBLE | WS BORDER | ES LEFT,

22*cxChar,

(int) (4.5*cyChar),

10*cxChar,

7*cyChar/4,

hwnd, (HMENU) 201 ,hins, NULL);
hwndButton[0]=CreateWindow ("button",

"Spin it !'",

WS CHILD | WS VISIBLE | BS PUSHBUTTON,

12*cxChar,

(int) (8.5*cyChar),

10*cxChar,
7*cyChar/4,

166 Chapter 12

Modification of a Molecule’s Coordinates

hwnd, (HMENU) 0, hins, NULL) ;
return 0;

case WM SHOWWINDOW
if ('connected) {
/* loading CDK API DLL *x/
if ('LoadHAPI ("hapi.dll")) {
MessageBox (hwnd,
"Error loading CDK's API DLL !",
"Error", MB OK | MB_ICONSTOP) ;
exit(0);
}
/* connecting to HyperChem */
if ('hcConnect(cmd line)) {
MessageBox (hwnd,
"Error while connecting with HyperChem !",
"Error", MB OK | MB ICONSTOP) ;
exit(0);
} else {
connected=TRUE;
}
/* obtaining coordinates from HyperChem */
nMol=hcGetInt (molecule count); // getting number of molecules
if (nMol < 1) {
MessageBox (hwnd,
"There are no molecules to play with !'",
"Error", MB OK | MB ICONSTOP) ;
hcDisconnect () ;
exit(0) ;
}i
nAtm=(int*)hcAlloc (nMol*sizeof (int)) ;
// getting vector specifing number of atoms in each
// molecule
if (!'nAtm) {
MessageBox (hwnd,
"Memory allocation error",
"Error", MB OK | MB_ICONSTOP) ;
hcDisconnect () ;
exit(0) ;
}i
if ('hcGetIntVec(atom count,nAtm,nMol)) {
MessageBox (hwnd,

Development Using the Windows API 167

Modification of a Molecule’s Coordinates

"Error while getting data from HyperChem !",
"Error", MB_OK | MB_ICONSTOP);
hcDisconnect() ;
exit (0) ;
};
nAtmTot=0;
for (i=0;i<nMol;i++) nAtmTot += nAtm[i];
org_xyz=(ATM_COORDS*)hcAlloc (nAtmTot*sizeof (ATM_COORDS)) ;
new_xyz=(ATM_COORDS*)hcAlloc (nAtmTot*sizeof (ATM_COORDS)) ;
if (('org_xyz) || ('new_xyz)) {
MessageBox (hwnd,
"Memory allocation error",
"Error", MB_OK | MB_ICONSTOP);
hcDisconnect() ;
exit (0) ;
};
if ('hcGetRealArr (coordinates,
(double*)org xyz,nAtmTot*3)) {
MessageBox (hwnd,
"Error getting atomic coordinates",
"Error", MB OK | MB ICONSTOP) ;
hcDisconnect () ;
exit(0);
};
}
SetWindowText (hwndEdit[0],"12") ;
// default step for rotation
SetWindowText (hwndEdit[1],"30") ;
// default number of rotations

return O;

case WM COMMAND

hdc = GetDC (hwnd) ;

SelectObject (hdc, GetStockObject (SYSTEM FIXED FONT))

switch (LOWORD (wParam)) {

case 0 :// ROTATE
EnableWindow (hwndButton[0], FALSE) ;
GetWindowText (hwndEdit[0] , szBuff ,MAX BUFF) ;
dRot=atof (szBuff) ;
GetWindowText (hwndEdit[1] ,szBuff,MAX BUFF) ;
nRot=atoi (szBuff) ;

’

168 Chapter 12

Modification of a Molecule’s Coordinates

dRot = dRot*3.14159256/180.0;
result=hcSetlInt (cancel menu,l);

for (i=0;i<nRot;i++) {

rAng=dRot* (i+1) ;

rSin = sin(rAng);

rCos = cos(rAng) ;

for (ia=0;ia<nAtmTot;ia++) {
new_xyz[ia].x = rCos * org_xyz[ia].x

+ rSin * org xyz[ia].y;
new_xyz[ia].y =-rSin * org_xyz[ia].x
+ rCos * org xyz[ia].y;

new_xyz[ia].z=org xyz[ia].z;
}

result=hcSetRealArr (coordinates,
(double*) new_xyz,nAtmTot*3) ;

if ('hcGetInt(cancel menu)) {

result=hcSetRealArr (coordinates,
(double*)org xyz,nAtmTot*3) ;

hcDisconnect () ;

PostQuitMessage (0) ;

break;

}

}

result=hcSetInt (cancel menu,0) ;
EnableWindow (hwndButton[0], TRUE) ;

break;
default : ;

}
ReleaseDC (hwnd, hdc) ;

ValidateRect (hwnd, &rect) ;
break ;

case WM DESTROY

result=hcDisconnect() ;
PostQuitMessage (0) ;
return 0 ;
}
return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

}

Development Using the Windows API 169

Modification of a Molecule’s Coordinates

Executing this program (after invoking HyperChem) gives the following win-
dow:

| Rotate -0 x|
Step Size Total Steps
12 30
Spin it!

Pushing the button will rotate the molecule by 12 degrees 30 times with the
above parameters. In conjunction with this program the Cancel button func-
tions appropriately. Pushing it will terminate the rotation and also terminate
the rotate program.

If you are new to programming for Windows and NT, you should now have
the basis for going on and beginning to build real Windows applications.
However, development with the MFC, as described in the next chapter, will
make your life much easier if you wish to develop serious graphical user
interfaces.

170

Chapter 12

Introduction

Chapter 13
Development Using the MFC

This chapter describes the development of C++ Windows programs using the
Microsoft Foundation Classes (MFC). We describe very briefly how to
develop Windows applications of this kind and then how to have them inter-
face and exchange data with HyperChem programs. Examples of such pro-
grams are given.

Microsoft Development Tools

Once again, the appropriate development tool associated with this chapter is
Microsoft Visual C++ which includes the Microsoft Foundation Classes. This
set of C++ classes allow you to build a Windows graphical user interface in a
very short period of time. The combination of the Integrated Development
Environment (IDE), the C++ compiler, and the MFC classes, that are all part
of Visual C++ 4.0 make for a powerful development tool. One can very
quickly put together a Windows application, much faster than with the tools
of the last chapter. It is still the case, however, that most of the commercial
software, even that from Microsoft, does not yet use the MFC. As easy as it
is, it does not provide quite the flexibility that making all your own lower-
level API calls does, as in the SDK-style. In addition, it is still necessary to
have a good appreciation of the Windows API, even if you are programming
with the MFC. Indeed, the API calls are required for many things even within
the higher level approach briefly described here. You should decide for your-
self whether programming in C with direct API calls (Chapter 12) or pro-
gramming in C++ with the MFC (this chapter) is for you.

Programming Assistance

As stated before, this cannot be a programming manual for Windows devel-
opment. We will illustrate the basic ideas for building Windows MFC pro-

171

A First Example

Language

grams that interface to HyperChem and provide some example code but a
serious approach to this subject requires you to obtain additional resources.
The first, of course, is Microsoft Visual C++ 4.0 itself. The ideas discussed
here can certainly be implemented with other compilers and with other devel-
opment environments, but you will have to make some adaptation of the
descriptions given here. We will not attempt to describe development with
alternative tools.

The second requirement, if you are new to Windows development, is access
to good documentation and tutorial material. One recent book on the subject
from Microsoft is,

Programming Windows 95 with MFC
Jeff Proise

Microsoft Press, 1996

ISBN 1-55615-902-1

There are many other books that describe development using the MFC and
Visual C++ 4.0 on the market, as well.

The C++ language of this chapter may be new to you. If this is the case you
may need programming books and tools that specifically address program-
ming in this language. In many ways the object-oriented flavor of C++ makes
it more different from C, than C even is from Fortran. An advantage of Visual
C++ and its Wizards is that very little code will need to be written for devel-
opment of the GUI and you will be able to develop significant applications
just writing C code for the chemical computation part of your application. An
investment in learning C++ programming is probably a well-rewarded invest-
ment.

A First Example

The first example of a C++ program that interfaces to HyperChem will be a
simple one to illustrate the basic tools and concepts of Visual C++ 4.0. Bring
up the Visual C++ program until it looks similar to the following:

172 Chapter 13

A First Example

Then,
1. Select <File/New...>

This will bring up a dialog box to select a Wizard to assist you in creating your
application,

e
e MFC A
| = =1

MFC Appifizard [dll)

OLE Contralfizard

Conzole Application

Application Vlwinaz
Dynamic-Link Library

C:\CppCalor

It is simplest to use the MFC AppWizard to create your application.

Development Using the MFC 173

A First Example

2. Type in a name for your application and hit <Create>.

You now are required to decide whether your application is a normal single
document application with a menu bar, tool bar, etc., a corresponding docu-
ment with a multiple document interface (MDI) or a simpler application that
is essentially just a single dialog box. For this first application, choose the
simpler approach.

3. Choose <Dialog based> and hit <Next>.
You are now asked to elaborate a little on the features of this dialog box.
4. Choose <About box> and <3D-controls> before hitting <Next>.

It is appropriate to choose a shared Dynamic Link Library for MFC and you
can should comments that may assist you in understanding the files produced.

5. Choose <As a Shared DLL> and <Yes, Please> prior to hitting <Next>.
You can now complete the process of creating your first MFC application.
6. Choose <Finish> and <OK> to complete the AppWizard’s work.

You are now left with an application that can be compiled and run but it will
not do anything of significance yet or be able to interact with HyperChem.

Modifications

To create a custom application, we want to modify the widgets on the dialog
box and create code for the modified ones. Specifically, we are once again
going to create two buttons - one to change the HyperChem screen color to
red and one to change it to green. To accomplish this, we first of all need to
modify the existing resources and create two new resources that are the two
new buttons.

1. Click on the <ResourceView> tab at the bottom of the left window.

2. Double click on <IDD_CPPCOLOR_DIALOG> to place the current dia-
log box in the right window as shown below:

174

Chapter 13

A First Example

Microsoft Developer Studio - CppColor - [CppColoric - IDD_CPPCOLOR_DIALOG [Dialog)] i] 4]
File Edit View Insett Buld Tools Layout ‘window Help &=l
||| - | C|@f 2] - ¢ [ondsplayia =l] %) Sléd| &
ICppCoIorrWin32 Debug El%lﬁlﬁl @I
E---a_[:ppl:olnllesnulces LI:::I||ul:|||I||HI||||I|||w||||wIJ
|29 Dialog -
IDD_ABOLITBOX CppColor 2 Controts I
IDD_CPPCOLOR_DIALL ;
7 Qlen o | | Bl
CI Stiing T able : Cancel abl|[™]| O
[Wersion ';I'DDD. Place dialog controls here. x| @ EH
| m|E
H || e
= |
1] | o ﬁ g
Sals) B
]‘
-
4 Evild 4 Debug, Findin Files % Profile IEN N 3
REEEEEEEEEEE =
Ready [0.0 |7 18592 |[READ /ﬂ

You will now want to delete the OK and Cancel buttons and the

TODO label.

3. Click on <OK> to select the button and then <File/Delete> to delete it.

4. Repeat for the Cancel button.
5. Repeat for the TODO label.

You can now add whatever widgets you like to the dialog box. Select the But-
ton control from the set of Controls and create a button on the dialog box by

dragging with the mouse until you get the following:

CppColor El

Buttarn

Development Using the MFC

175

A First Example

That is,
6. Create a Button on the dialog box.

To create a second button select the first one shown above, copy it to the clip-
board and then paste it back,

7. Copy and Paste the Button to create a second one.

CppColor El

Buttan

Buttani

You can now double click on each button in turn to modify its properties.

8. Double click on the first button to change its name to IDC_RED and it
Caption to Red.

9. Repeat for the second Green button.

Puzh Button Properties x|
'Wl?l General | Stylez | Extended Styles |

ID: [IDC_GREEN x| Captior: [Greer|

Iv! Wisible [Group [~ Help I

[Dizabled ¥ Tabstop

The buttons should now be labelled Red and Green. To continue, we need to
invoke the Class Wizard to allow us to create specific code for these buttons.

176 Chapter 13

A First Example

10. Select the menu item <View/Class Wizard...>

You should see the following:

MFC ClassWizard x|

Message Maps tember ' ariables | OLE Automation OLE Events I Clazz Info |

Project: Clazs name: Add Class.. * |
IEppEoIor

ﬂ IEEppCoIorDIg A
Add Function... |
C:ACppColaryCppColorDig b, C:A\CppColorsCppColorDlg. cpp

Object [Ds: Messages: elete Founeton |

CCppColarDlg -
LDE GREEM BN_DOUBLECLICKED Edit Code |

bember functions:

W DoDataExchange -
W OninitDislog ON_wh_INITDIALOG

W OnPaint ON_wt_PAINT

W OnluerwDraglcon On_wihd_CQUERYDRAGICON

W OnSvzCommand 0N wihd SYSCOMMAND LI
Diezcription: Indicates the uzer clicked a button

QK I Cancel | Help |

11. Select<IDC_RED> and <IDC_GREEN> in turn with the Message field
as <BN_CLICKED> and hit <Add Function> to create functions OnRed
and OnGreen.

Next you need to add code for these functions, so,
12. Hit <Edit Code> and type in the correct code for each button.
The appropriate code to add is:

void CCppColorDlg: :0OnRed ()

{
// TODO: Add your control notification handler code here
hcExecTxt ("window-color red") ;

13. Repeat steps 11 and 12 for the green button.

void CCppColorDlg: :0OnGreen ()

{
// TODO: Add your control notification handler code here
hcExecTxt ("window-color green") ;

Development Using the MFC 177

A First Example

This completes the use of the AppWizard and Control Wizard for creating
this application. There are still a couple of things that have to be done, how-
ever, before this code will compile and run correctly. The first task is to add
our include files to the set afcludes The second task is to load the dynamic
link library so that the function hcExec can be found. Finally we have to make
a connection between this program and HyperChem.

The MFC application includes a number of files, all of which are machine
generated. In this case CColor.cpp is really identical to a generic application
and no changes to it are necessary. The CColorDIg.cpp file contains all the
code associated with the dialog box and we need to modify this code. To look
at code you select the <FileView> tab of the left window, find the file of inter-
est and double click on it. This will give you a view of CColorDlg.cpp as
below:

Microzoft Developer Studio - CppColor - [CppColorDlg.cpp] - Dlﬂ
File Edit ‘iew |nsett Buld Tools Window Help = Ellil

2[B[E[E] 5 [E]e] =]] [

@ |ﬁ||| IEppEnIm -'w/in32 Debug

Ea CppColor files

= &5 e &K
] e R e e M
CAbuutDngbiect\DleAqulDIg j Messagesl j ﬁl.hl

Cpplolor.cpp
CppCalar.rc
CppColoDlg.cop
ReadMe.tat
Stddfx cpp

< CppColorDlg.cpp @ implementation file
P

(D

#include "stdafx h"
#include "CppColor.h'

B (] Dependencies #include "CppColorDlg.h
#ifdef _DEBUG

#define new DEBUG_HEW

#undef THIS_FILE

=tatic char THIS_FILE[] = _ FILE_ ;
#endif

LTSS AL AL LSS TSI AL AL TGS TS AL
< ChboutDlg dialog used for App About

EEE T P LILI
]I

Al Euild { Debug b Findin Files 3, Piofile KRN v

Feady /A

Included Files

// CppColorDlg.cpp

//

At the beginning of the above file the following bold-faced code should be
added to the include files already there:

implementation file

#include "stdafx.h"

178 Chapter 13

#include
#include
#include
#include

A First Example

"CppColor.h"

"CppColorDlg.h"

“he.h”

“hecload.c”
These are the include files that are needed to communicate with HyperChem.
If you are making library calls, e.gcExecBinyou will needhsv. h also.

Dynamic Link Library and Connecting to HyperChem

The code that is needed to initialize the loading of the HAPI.DLL and estab-
lish the connection to HyperChem should be placed i®tiigitDialog rou-

tine insideCColorDlg. cpp after the appropriate place where the AppWiz-
ard tells you it should go,

SetIcon(m hIcon, TRUE);// Set big icon
SetIcon(m hIcon, FALSE);// Set small icon

// TODO: Add extra initialization here

if (!LoadHAPI ("hapi.dll"))

{

MessageBox ("Error loading HAPI.DLL", Error",

MB_OK|MB_ICONSTOP) ;

exit(0);

}

if ('hcConnect(NULL)))
MessageBox ("Error connecting to HyperChem", "Error",

MB_OK|MB_ICONSTOP) ;

return TRUE; // return TRUE unless you set the focus to a control

This completes the first simple example. If everything went correctly, you
should have created a Windows application that can talk to and control
HyperChem. Remember that the code we have put into the new Windows
application expects HyperChem to be there so that you need to start Hyper-
Chem before starting the new application. The CppColor application looks as
follows:

Development Using the MFC 179

Cavity

"4 CppColor x|

[Ereen

Cavity

This next example, called Cavity, is considerably more sophisticated than the
last example. It is still a simple Dialog application but it collects significant
information from HyperChem - the current selections, the current coordi-
nates, plus it collects the values of quantities in the dialog box before calcu-
lating the center of mass of the selection. The application can then place an
atom of arbitrary atomic humber at the center of mass of the “cavity” and
draw special dotted bonds between the center of the cavity and the rest of the
molecule. It is essentially identical to the last example except for the more
sophisticated interactions with HyperChem and the inclusion of entries made
in the dialog box. The code for this example is on the HyperChem CD-ROM.
The dialog box is shown below,

180 Chapter 13

a HyperChem - [untitled)
File Edit Build Select Display Databases Setup Compute Script Cancel Help

=0l

Cavity

@l@ltng;;liu: Il Al al = Al .~ l_;thEl él ? |*?|

~Geomety———————————— " Element type

" Center-of-mass <Al
& Only heavy atoms

' Geometrical center

Calculate

i~ Center properite;
% [0472576
¥ 0287048
£ |-0.000000

Max R [1.333607
Min. R [1.333745
& R [1.333702

— Center placement

Use atomic number: |25 Place atom |

Select atom | Delete atom |

Esit |

|Built 1E atoms. | |M"“+ o

This application is too long to discuss all the code here. If you are interested,
however, you should be able to follow every aspect of this relatively simple
calculation using the full source code. All the calls in this program are text-
based calls with no binary call that need hsv.h. We will discuss certain por-
tions of the code as being instructive of how one generally interacts with
HyperChem. The cod@®nCalg associated with pushing the Calculate button

is where the coordinates are read. The first thing that is necessary, before
reading the coordinates, is to characterize the atoms and molecules of the sys-

tem in HyperChem,

// HyperChem won't send tags with OMSGS
hcExecTxt ("query-response-has-tag = false");
// Gather information about molecular system
// start with number of molecules
resp=hcQueryTxt ("molecule-count") ;
iMol=atoi (resp) ;hcFree (resp) ;

// allocate memory for iaAtomCount array
iaAtomCount=(int*)calloc (iMol, sizeof (int)) ;
// next, get count of atom in each molecule
resp=hcQueryTxt ("atom-count") ;

// parse string returned by CDK into integer array

Development Using the MFC

181

Cavity

pstr=resp;

i=0;iAtomTot=0;

while (ptok=strtok(pstr, DELIMITERS)) {

}

if (pstr) pstr=NULL;

iAtomTot

hcFree (resp) ;

+= iaAtomCount[i++]=atol (ptok);

As with many interfaces to HyperChem, the first thing to do is to eliminate
the tag which comes, by default, with a returning message. Next, we get the
number of moleculesnolecule-countwhich comes in as a string and gets
converted to an integer. The memory allocation for the string occurs automat-
ically within hcQueryTxt and this memorgust be freedy you when the

string is no longer needed. Forgetting to free memory is a common C pro-
gramming error.

The HSV, atom-count, is a vector. Each element could have been read in turn
but all the elements can also be read at once - the resulting string must then
be parsed, however. The vector , iaAtomCount, is used to hold the result of
this parsing.

The next step is to sort out which of the atoms and molecules are selected
since we are only going to read the selected atoms coordinates. This result in
vectors iaSelectedAtom and iaSelectedMol being allocated and filled in, plus
a variable, iSelected, that represents the total number of atoms selected. The
code for this can be inspected in the source files if you wish. We skip it for
brevity. The next step is to read the coordinates for the selected atoms. The
code for this is,

// get coordinates of atoms

faX=(float*)calloc (iSelected, sizeof (float));

fa¥Y=(float*)calloc (iSelected, sizeof (float));

faz=(float*)calloc (iSelected, sizeof (float));
(1s=0; is<iSelected;is++) {

wsprintf (buff, "coordinates (%d, %d) ",

iaSelectedAtom[is], iaSelectedMol [is]) ;
resp=hcQueryTxt (buff) ;

for

pstr=resp;
i=0;1in=0;

while (ptok=

if (pstr)

strtok (pstr, DELIMITERS)) {
pstr=NULL;

switch (4in) {

182

Chapter 13

Cavity

case 0: x=(float)atof (ptok); in++; break;
case 1: y=(float)atof (ptok); in++; break;
(float)atof (ptok); in=0; break;

case 2: z

}
hcFree (resp) ;

faX[is] = x;
faY[is] = y;
fazlis] = z;

The loop over selected atoms makes a request for the coordinates of that
atom, as an element of the coordinate array. This element is a string of three
values (X, y, and x coordinates) and has to be parsed.

The code for the remaining portions of this problem is available for your
inspection, if you are interested.

Development Using the MFC 183

Cavity

184 Chapter 13

Chapter 14

Console C and Fortran Applications

Introduction

This chapter describes how to develop “conventional” character-oriented or
console applications in C or Fortran that can be interfaced with HyperChem.

It is relatively common in computational or theoretical chemistry to develop
applications in Fortran (or as is becoming more common, in C) that have no
graphical user interface but operate with input files creating output files. For
example, many programs have been developed to calculate a molecular wave
function. Such a program in its simplest form might need as input the Carte-
sian coordinates of a molecule and give as output the energies and coeffi-
cients describing the molecular orbitals. It is a significant effort to build the
additional graphics program that would allow the molecule to be just sketched
and the output to be presented as a 3D rendering of the molecular orbitals. The
CDK, however allows the developer of such a molecular orbital program to
use HyperChem to sketch the molecule and to render the molecular orbitals.
HyperChem can act as a front end GUI and a back end visualizer to this char-
acter-oriented program by simply having it call on HyperChem whenever it
needs graphical services.

Console Applications

Microsoft refers to programs that have no graphical user interface as console
applications. An example output from one of these console applications is
shown below.

185

Introduction

E orbitals =18l

Console Example

There are 8 atoms in 1 molecules
3.346881270408630E-881 -1.420232802629471E-8081 -4.426935315132141E-861
.884356863796711E-002 5.882838368415833E-881 8.781813977148865E-86A1
.358785385208130E-A01 -7.251807451248169E-881 -7.452613115318669E-8681
.688869953155518E-001 5.892016887664795E-8A1 -1.216360688209534
1.186713099479675 -8.B698937177658688E-AA1 -3.8136513716862197E-061
.786821876335144E-001 1.171441197395325 1.188749177932739
2317292698277160E-001 1.2532581689092712 7.368418229682922E-861
853704416791397E-8801 -1.429343874560165E-801 1.6518568461959839

These applications look a lot like many UNIX applications or applications
developed in DOS. Until recently it was very difficult to develop such console
programs within the Windows environment, i.e. without a window and a
graphical user interface. Now with Windows 95 or NT and Visual C++ 4.0
and Fortran Power Station it is relatively easy to port traditional non-graphi-
cal scientific applications to the Windows environment. With the Chemists
Developer Kit, it is also easy to interface these to HyperChem.

C or Fortran

Until recently, the Microsoft Windows environment and development tools
have essentially been usable only with C (or C++). With the recent introduc-
tion of Fortran PowerStation, however, it has become easy to develop Win-
dows applications in Fortran. For console applications, the tools for C and
Fortran are essentially on the same basis and the choice can be based upon
which language is your personal choice. For more graphical programs, For-
tran (which requires calls to the Windows API - developed for C) is still more
awkward to use than C. It is still possible, however, using tools that Microsoft
has provided with Fortran PowerStation. In this chapter and in this manual we
will not concern ourselves with development of graphical user interfaces in
Fortran. Rather, we restrict our Fortran discussions to the console applica-
tions of this chapter. For such console applications, C and Fortran are inter-
changeable as to their ease of use within Windows.

186

Chapter 14

C Program

The Integrated Development Environment

The Visual C++ 4.0 Integrated Development Environment is where Fortran
PowerStation programs are developed and this gives an identical develop-
ment environment for both C and Fortran. Thus a console program is created,
as before, by selecting <File/New>, choosing to create éPneject Work-
spaceand then selecting a Console Application,

Mew Project Workspace 5]
o ;I IF!eerc:li
E Application Cancel |
Dynamic-Link Library ﬂl
ﬁ Conzale Application
e Platfarrm:
Static Library wlwfinaz
Quickyin Application
Location:
Standard Graphics Applice_l IE'\Heerct B
- : Browse... |

For console applications, one hagrtsertC (*.c), C++ (*.cpp), or Fortran
(*f) files into the project as needed since none are generated automatically as

with the AppWizard.

C Program

/*

Our first example of a console program is a C program. The program looks
like any C program beginning with main(), etc. The code for it is as follows:

* Console - UNIX like C program that talks to HyperChem *

*/
#include
#include
#include
#include

int main(int iArg,

{

<stdio.h>

<windows.h>

"hec.h"

"hcload.c"

char **pArqg)

char cmd 1ine[100],initColor[100],color[100],buffer[100];

Console C and Fortran Applications

187

C Program

char *response;
int result;

/*

loading HAPI.DLL */
if (!LoadHAPI ("hapi.dll")) {
printf ("Error loading HAPI.DLL !\n");

exit (0);
}i
/* connecting to HyperChem */
if (iArg!=2) {
strcpy(cmd line,"");
} else {

/*

strcpy (cmd line,pArgl[l]);

}i

if (!hcConnect(cmd line)) {
printf ("Error while connecting with HyperChem !\n");
exit (0);

}

obtain initial window-color from HyperChem */

response=hcQueryTxt ("window-color") ;
printf ("initial state = %s\n",response);
strcpy (initColor, response) ;

hcFree (response) ;

for(;;) |

}

printf ("Choose window-color (black, green, red ... (-1 to end))\n");

scanf ("%s",color) ;

if (atoi(color) == -1) {
result=hcExecTxt (initColor) ;
result=hcDisconnect () ;
return 0 ;

} else {
sprintf (buffer, "window-color %s",color);
result=hcExecTxt (buffer) ;

return 0;

This code looks like any simple C program with the exception of calls to
hcConnect, hcQueryTxt, hcExecTxt, and hcDisconnect. Any command line
arguments are passed through to HyperChem. The header files, hc.h and
hcload.c are required as is the dynamic loading of the library of the Hyper-
Chem Application Programming Interface, HAPI.DLL. Subsequent to con-

188

Chapter 14

Fortran Programs

necting to HyperChem, the program can just read and write HSV'’s to Hyper-
Chem or control HyperChem via direct commands. The program requires
HyperChem to be running prior to its own invocation. The result of running
this program is the following Console window.

i console o = 2|
initial state = window-color = White

Choose window—color (hlack. green,. read ... (-1 to end>>

red

Choose window—-color (hlack. green,. read ... (-1 to end>>

green

Choose window—color (black., green, read ... (-1 to end)>

The corresponding HyperChem window with its changing background colors
is not shown. The console window contains any text that a normal C program
outputs via “standard output” using printf, etc. It can be iconized, if desired,
so that it is effectively running in the background while you interact with
HyperChem. It behaves very much like HyperNewton, HyperNDO, etc., the
standard back ends that come with HyperChem and perform compute inten-
sive computations.

Fortran Programs

We will now illustrate, in somewhat more detail, examples of Fortran pro-
grams that behave like the above. It is believed that HyperChem and the CDK
provide an ideal opportunity to interface a wide variety of Fortran programs,
such as could be available from the Quantum Chemistry Program Exchange
(QCPE) at Indiana University. Many programs have been generated over
many years, by many chemists, and these could very quickly have a “slick”
graphical user interface.

Console C and Fortran Applications 189

Fortran Programs

Reflect

Our first example is a program that simply collects the coordinates of all the
atoms from HyperChem, performs some simple transformation of these coor-
dinates, and sends them back to HyperChem for display. For simplicity we
will use areflection in the XY plane through the origin to illustrate the general
process. That s, our program will replace all Z coordinates by -Z. If your mol-
ecule has chiral centers and their chirality label is displayed, you will see the
conversions R->S and S->R from running this program.

This example, while trivial, has some of the characteristics of a “real” pro-
gram that would perform significant computation on an “initial” structure
leading to a “new” structure. Molecular dynamics programs or a structure
optimization programs have this flavor. The whole program is,

program Reflect

C

Q

Q

C

include header files - HAPI definitions and declarations
include 'hc.fi'

include 'hsv.fi'

parameter (nDimensions=3)

parameter (nMaxAtoms=2000)

character*60 cmd line

logical result

integer status

integer nAtoms

double precision XYZ (nDimensions, nMaxAtoms)
Connect to HyperChem using current command line

call getarg(l,cmd line,status)
result=hfConnect (cmd_line)
if (.NOT. result) stop

we do not want to have names in front of HSVs !
query-response-has-tag=false does this for us
result=hfExecTxt ("query-response-has-tag=false")

write(*,*) 'Reflection Example'

call subroutines to read in initial atom coordinates

190 Chapter 14

Fortran Programs

c and write final atom coordinates
call GetCoords (XYZ, nDimensions, nMaxAtoms, nAtoms)
call PutCoords (XYZ, nDimensions, nMaxAtoms, nAtoms)

end

subroutine GetCoords (coords,nDim, nMaxAt, nAt)

O
c gets xyz coordinetes of all atoms in the system

c and stores them in 'coords' array

o

c include HAPI definitions and declarations
include 'hc.fi'
include 'hsv.fi'

double precision coords (nDim, nMaxAt)

Q

get number of molecules from HyperChem (integer wvalue)
using hfGetInt "binary" function

Q

nMol=hfGetInt (molecule_count)

c get total number of atoms by scanning all molecules
nAt=0
do 1 i=1,nMol

Q

get number of atoms in the molecule

¢ hfGetIntVecElm is "binary" function ("atom count" is Integer Vector)
iatoms=hfGetIntVecElm(atom_ count, i)
nAt=nAt+iatoms

1 continue

write(*,*) 'There are ',nAt,' atoms in ',nMol,' molecules'

Q

get xyz coordinates of all atoms and place them into 'coords' array
using hfGetRealArr "binary" function ("coordinates" is Real Array)
lres=hfGetRealArr (coordinates, coords,nDim*nMaxAt)

Q

do 111 i=1,nAt
write(*,*) (coords (k,1),k=1,3)

11llcontinue
write(*,*)'-——————--——- !
return

Console C and Fortran Applications 191

Fortran Programs

end
subroutine PutCoords (coords,nDim, nMaxAt, nAt)

c takes the coords array and send it back to HyperChem
c as the cartesian coordinates of all atoms

e
c include HAPI definitions and declarations
include 'hc.fi'
include 'hsv.fi'
double precision coords (nDim, nMaxAt)
write(*,*) 'There are ',nAt,' atoms'
do 111 i=1,nAt
coords (3,i) = -coords(3,1i)
write(*,*) (coords(k, i), k=1, 3)
111 continue

write(*,*)'-—————————-
c get xyz coordinates of all atoms and place them into 'coords' array
c using hfGetRealArr "binary" function ("coordinates" is Real Array)
lres=hfSetRealArr (coordinates,coords,nDim*nAt)
return
end

The console output is,

#E Reflect o =]

Reflection Example
There are 5 atom

1 molecules

1.192@9289550781 3E-AQ7
1.192092895587813E-A@7
1.6593463420886792
—9.803690481185713E-001
—9.899568809135437E-001
There are

1.192892895587813E
1.192092895587813E-A@7
1.659346342886792
—9.883698481185713E-001

5 atom
—Ba7

—2.89956080913543VE-BO1

Press any key to continue_

s in

B . AAARRRRRRRRARARE +BBRA
1.36680000143685115

-5.866682659225464E-001

-6.366597414016724E-001

—7.888076174736823E-001

0. 80ABBHHARAAARRE +BB6

1.36680000143685115
-5.866602659225464E-A01
—6.366597414016724E-B01
—7.888076174736023E-001

B . AAARRRRRRARARARE +BRR
0. 8AABRHIRABABREE +BB6
-3.592139343491155E-817
-1.559519@852505493
1.714635618588444

0. 6AABRANRAAAERRE +BB6
0. 6ARBRHIRABABREE +BB6
3.592139343491155E-817
1.559519852585493
-1.7146356108580444

192 Chapter 14

Fortran Programs

This example illustrates the use of both binary calls subfSztRealArthat
require the include filehsv. £i as well as text calls such afExecTxthat

do not. The binary calls require the includefitev . £1i to map integers such

as “atom_count” to the appropriate HyperChem variable. Note that in binary
calls all “hyphens” are replaced by “underscores”. Thus the HSV, atom-
count, maps to the integer atom_count througdv . fi. Each of the HAPI

calls is described in Appendix C.

A single call in the code above is all that is necessary to read or write the atom
coordinates once the total number of atoms is know. HyperChem combines
atom numbers within a molecule with molecule numbers to obtain a unique
atom number. The code first of all has to query for the number of molecules
and then for the number of atoms in each molecule to obtain the total number
of atoms. Beyond that computation the rest of the above program is very
straight forward.

MiniGauss Orbitals

The next example is one which contains the elements of a number of poten-
tially very significant uses for the CDK. It provides molecule creation and
visualization for arab initio wave function package. Tla initio package is
based on a demonstration Fortran code that is an appendix to the book,

Modern Quantum Chemistry
Attila Szabo and Neil S. Ostlund
Dover Publications, Inc.

New York, 1996

This program, only a couple of pages long, contains all the code édriai

tio STO-1G, STO-2G, or STO-3G calculation on 2-electron diatomics like
H,, HeH', He,™, etc. It has proved a useful educational tool for a number of
young (and not-so-young) theoreticians. What we do here is offer a “front
end” to this program to illustrate how HyperChem can provide molecular
coordinates plus the visualization of the 3D shape of the calculated orbitals
and charge density.

Outline

The basic idea of this example is to mimic the actions of HyperGauss, a full
fledged ab initio package that comes with HyperChem. We will operate the

Console C and Fortran Applications 193

Fortran Programs

MiniGauss back end by having a menu item and scripts to conveniently run
the Fortran program. All the scripts for this example, plus the Fortran code,

are on the HyperChem CD-ROM associated withQHgitals directory.

While we could easily use the idea of custom menus to run this program we
will simply place an appropriate menu item in the <Script> menu. To do this,

we first of all run a scripprbitals.scr, to set up a convenient way of running

these calculations. This script is,

script-menu-caption(1) = "MiniGauss"

script-menu-enabled(1) = true

script-menu-command(1) = "read-tcl-script orbitals.tcl"

This sets up a new menu iteminiGauss that when invoked executes a Tcl
script calledbrbitals.tcl. Theorbitals. scr script could be placed
intochem. scr so thatitis always executed and the MiniGauss menu always
appears - if you have developed an application that you would like to be more
or less permanently installed. The HyperChem menu item looks as follows:

TH, HyperChem - [untitled)]
File Edit Build Select Display Databases Setup Compute [EEia@ Cancel
Help Open Script...
@l@l@l@l%’lil@i\olﬁl D|D”|E| é{: ||E|| é MinilG ausz
H
He
| | |&blni g

A New GUI Element

The Tcl/Tk scriptorbitals. tcl is going to give us an additional GUI
element (dialog box) that makes for interactive use of MiniGauss. This dialog
box, invoked by selecting the MiniGauss menu item above, is,

194 Chapter 14

Fortran Programs

orbitals tel _ |0 x|
fetal
1.2
fetal
1.6

Compute |

It collects the two Slater exponents for the minimal basis calculation. For the
other input to the calculation, i.e. the N of STO-NG, we are going to use the
standard facility of HyperChem to define a basis set. Thus, it is only the above
orbital exponents, plus of course the molecule, that MiniGauss needs. The
Tcl/Tk script,orbitals.tcl, is,

label .11 -text "Zeta1"

entry .en1 -width 20 -textvariable inzeta1
label .12 -text "Zeta2"

entry .en2 -width 20 -textvariable inzeta2

button .b -text "Compute" -command {

hcExec "declare-string zeta1"

hcExec "declare-string zeta2"

hcExec "zeta1 $inzeta1"

hcExec "zeta2 $inzeta2"

hcExec "execute-client mini.exe"

Exit
}

pack .11 .en1 .12 .en2 .b

This Tcl script is basically just Tk code to create two labels, two text entry
boxes, and a button to dismiss the dialog box and start the MiniGauss calcu-

lation.

Console C and Fortran Applications 195

Fortran Programs

The two text entry boxes are used to input the two orbital exponents, zetal
and zeta?, as strings inzetal and inzeta2. The button calls HyperChem to cre-
ate two new string variables (new HSV’s) called appropriately zetal and
zeta2. These new HSV'’s are then assigned the strings collected from the entry
boxes. This is the first time we have seen the ability to create new HSV's and
as you can see here itis very useful to provide a repository for any new values
entered from a new GUI until they can be passed to their ultimate destination,
which in this case will be the MiniGauss program.

The Main Program

The last two things done by pushing the Compute button are:
hcExec "execute-client orbitals.exe"
Exit

The Exit, with a capital E, exits the Tcl script but not HyperChem [an exit
with a small e would exit both the Tcl script and HyperChem!]. In concert
with this, the MiniGauss program is invoked which is our main Fortran pro-
gram and is here calletkbitals.f (and orbitals.exe).

Program Orbitals
implicit double precision(a-h,o-z)

m
c include header files - HAPI definitions and declarations
include 'hc.fi'
include 'hsv.fi'
parameter (nDimension=3)
parameter (nMaxAtoms=2000)
character*60 cmd line
logical result
integer status
integer nAtoms
double precision XYZ (nDimension, nMaxAtoms)
c
c Connect to HyperChem using current command line
c

call getarg(l,cmd line,status)

196 Chapter 14

Q

Q

Fortran Programs

result=hfConnect (cmd_line)

if

result) stop

we do not want to have names in front of HSVs !
query-response-has-tag=false does this for us
result=hfExecTxt ("query-response-has-tag=false")

write(*,*) 'Orbitals Example'

call subroutine to read in initial atom coordinates

call DoCalc(XYZ, nDimension, nMaxAtoms, nAtoms)
call SendResults

end

The main program simply connects to HyperChem and makes sure that you
don't get the tags along with the values when HSV'’s are queried. It then calls
a routine (DoCalc) that is principally concerned with performing the calcula-

tion and one which sends back the results to be displayed graphically (Sen-
dResults).

Get Molecule

The Subroutine DoCalc is primarily concerned with getting the coordinates
of all the atoms (nAtoms) to be input to the minimal basiglsétitio calcu-
lation. This subroutine is,

subroutine DoCalc (coords,nDim, nMaxAt, nAt)
implicit double precision(a-h,o-z)

gets xyz coordinates of all atoms in the system
and stores them in 'coords' array

include HAPI definitions and declarations

include
include

'he. £fi'
'hsv.£fi'

character *100 buffer
double precision coords (nDim, nMaxAt)

get number of molecules from HyperChem (integer wvalue)
using hfGetInt "binary" function

Console C and Fortran Applications 197

Fortran Programs

C
C

nMol=hfGetInt (molecule_count)
we can work only with one molecule

if (nMol .gt. 1) then

write (*,*) 'This demo assumes that you have only ONE molecule'
disconnect from HyperChem

result=hfDisconnect ()

stop

endif

get total number of atoms by scanning all molecules
nAt=0
do 1 i=1,nMol

get number of atoms in the molecule
using hfGetIntVecElm "binary" function ("atom count" is Integer

Vector)

[

C

iatm=hfGetIntVecElm(atom_count,i)
nAt=nAt+iatm

continue
we can only work with a diatomic

if (nAt .ne. 2) then

write (*,*) 'This demo assumes that you have TWO atoms'
disconnect from HyperChem

result=hfDisconnect ()

stop

endif

find out atomic numbers
nAtNuml=hfGetIntArrElm(atomic number, 1, 1)
nAtNum2=hfGetIntArrElm(atomic_number, 2, 1)

if (nAtNuml .gt. 2 .or. nAtNum2 .gt. 2) then

write (*,*) 'This demo assumes that you have H or He atoms'
disconnect from HyperChem

result=hfDisconnect ()

stop

endif

za = dfloat (nAtNuml)

zb = dfloat (nAtNum?2)
nCharge=hfGetInt (quantum_ total charge)

nElectrons = nAtNuml + NAtNumZ - nCharge

if (nElectrons .ne. 2) then

write(*,*) 'This demo assumes that you have 2 electrons'
disconnect from HyperChem

198 Chapter 14

Fortran Programs

result=hfDisconnect()

stop
endif

c get the basis set
result = hfQueryTxt ("atom-basisset(1l,1)", buffer)
if (buffer(1l:6).eq.'STO-3G') then

n=3

else if (buffer(l:6) .eq. 'STO-2G') then

n=2

else if (buffer(l:6) .eq. 'STO-1G') then

n=1
else
n=3
end if

c get the zeta

result = hfQueryTxt ("zetal", buffer)
read (buffer,*) zetal
result = hfQueryTxt ("zeta2", buffer)
read (buffer,*) zeta2

c get xyz coordinates of all atoms and place them into 'coords' array
c using hfGetRealArr "binary" function ("coordinates" is Real Array)
lres=hfGetRealArr (coordinates, coords,nDim*nMaxAt)

dx

dz
r = dsqrt(

coords (1l,1)-coords (1,2
dy = coords(2,1)-coords(2,2)
coords (3,1)-coords (3,2

)

4

1 2)
dx*dx + dy*dy + dz*dz) /0.52918

call hfcalc(n,r,zetal,zeta2,za,zb)

return
end

The above code contains a number of text and binary calls to HyperChem. A
single call (hfGetRealArr) gets all the coordinates once we know the number
of atoms. The two orbital exponents that we got from the Tk dialog box and
stored in HyperChem are retrieved from HyperChem along with other infor-
mation that HyperChem has about the calculation that is about to be per-
formed. One aspect of this information is the basis set, as set by the user in
HyperChem. If HyperChem says it is one of the STO-NG basis sets then that
information is used, otherwise an STO-3G calculation is performed. The
remaining code near the beginning is associated with getting basic informa-
tion about the molecule and making sure it is simple enough for MiniGauss.

Console C and Fortran Applications 199

Fortran Programs

Wave function Calculation

The call to the routinbfcalcis set up to be identical (apart from iop which is
a printing option) to that in Szabo and Ostlund so that you might substitute
their few pages of code if you so desire. A drastically simpler version of
hfcalc used here is,

subroutine hfcalc(n, r, zetal, zeta2, za, zb)
implicit double precision(a-h,o-z)
common/matrix/s(2,2),x(2,2),xt(2,2),h(2,2),£(2,2),9(2,2),c(2,2),

$ fprime(2,2)

c(l,1) = .707
c(2,l) = .707
c(l,2) = .707
c(2,2) = -0.707
e(l,1) = -5.0

e(2,2) = 5.0
return
end

,cprime(2,2),p(2,2),0ldp(2,2),tt(2,2,2,2),e(2,2)

This just sets the eigenvalues to arbitrarily be -5.0 and +5.0 and the eigenvec-
tors to be the standard in phase and out of phase orbitals for HOMO and
LUMO. The assumption here is made that the overlap is small so that coeffi-
cients are just 1/sqgrt(2).

As discussed a better hfcalc could easily be programmed. The one shown here
is perfectly satisfactory for illustrating the use of the CDK, however.

Displaying Orbitals and ...

The routine that sends back the orbitals for display is,

subroutine SendResults
implicit double precision(a-h,o-z)
common/matrix/s(2,2),x(2,2),xt(2,2),h(2,2),£(2,2),9(2,2),c(2,2),

$ fprime(2,2)

,Cprime(2,2),p(2,2),0ldp(2,2),tt(2,2,2,2),e(2,2)

c include HAPI definitions and declarations

include 'hc.fi'

include 'hsv.fi'

character *80 buff

result = hfExecTxt('orbital-count=2"')

write (unit =

buff, fmt = '(2£8.4)') e(1,1), e(2,2)

200

Chapter 14

Fortran Programs

result = hfExecTxt('scf-orbital-energy='//buff)

write (unit = buff, fmt = ' (2£8.4)') <c(1,1), c(2,1)
result = hfExecTxt('alpha-scf-eigenvector(l)='//buff)
write (unit = buff, fmt = ' (2£8.4)') <c(1,2), c(2,2)

result = hfExecTxt('alpha-scf-eigenvector (2)='//buff)
write result = hfExecTxt('alpha-orbital-occupancy= 2 0')

return
end

There are a number of ways that the results might be returned. One way is to
make binary HAPI calls such ashoSetRealVew return vectors of coeffi-
cients. We have chosen here to illustrate the return of text strings to Hyper-
Chem. The first thing that is done is to set the total count of the number of
molecular orbitals which in the minimal basis illustrated here is 2. Next the
orbital energies are returned and then the eigenvectors. Since this is only a
closed-shell calculation, only the alpha (RHF) coefficients need be filled in.
Finally the occupancy is set with 2 electrons in the first orbital (HOMO) and

0 electrons in the LUMO. The result of selecting the MiniGauss menu item
with HeH" on the screen is,

Orbitals x|
— Orbital Pan-

& Aloha || LUMD + 5 d
£ Beta :

Energe: |5 el

Symmetry:

— Orbital Platting

2D Contours
' 30 lsosuface

[Orbital squared
Plot | Optiong. .. | W Lahels Zoom Dut |

Copy Ok LCancel |

Console C and Fortran Applications 201

Further Examples

The orbitals or the charge density or the electrostatic potential can be plotted
The orbitals are somewhat artificial here but asking for the LUMO orbital
gives a plot like the following:

aHypeﬂ:hem - [untitled] =100 x|
File Edit Build Select Display Databases Setup Compute Script Cancel

Help

) (O] el 53 Vs P P T =3~ | A = L= = A L]

-

| |ahini 2

Diffusion Limited Aggregation

The final example to be mentioned is one of diffusion limited aggregation and
is contained in the dla directory from the HyperChem CD-ROM. This is pre-
sented for those who wish to follow it as an example that has a Visual Basic
program, setup_dla.exe, to create a number of new variables in HyperChem,
the getting from HyperChem of the initial molecular system, the creation of
new atoms and structures in the HyperChem workspace, and a more elabo-
rated dialog box than we have used so far.

Further Examples

Further examples of using the CDK that might be of interest to you can pos-
sibly be found in conjunction with your specific CD-ROM installation of
HyperChem or possibly on the Hypercube WWW site,
http://www.hyper.com

202 Chapter 14

Appendix A

Classification of Hcl Commands

The Classes

In this appendix we list all the HSV’s and Hcl direct commands according to
a set of classes that will hopefully assist you in finding the appropriate script
command for your task. In the Reference Manual these script commands are
classified differently - according to the related HyperChem menu. In Chapter
7 all HSV’s and direct Hcl commands are listed in alphabetic order. These
three listings complement each other and should assist you in getting familiar
with the extensive set of script commands. The listings in the Reference Man-
ual have the most explicit description of each of the following script com-
mands and should be referred to if the use of the command listed here or in
Chapter 6 is confusing to you.

The classes which we use to help classify all the script commands are:

* General Operations
e Cursors
e Selections

» File Operations

e Scripts

* Info

* Errors

* Logging

e Auxiliary
* Viewing

* Rendering

» Coloring and Labeling

203

The Classes

* Images

* Model Building

* Stereochemistry

» Atom Properties

* Molecular Properties

» Backends

* Molecular Mechanics Calculations
* Amino Acids and Nucleic Acids

* Molecular Dynamics and Monte Carlo
» Optimization

* General Quantum Mechanics

» Semi-empirical Calculations

e Ab Initio Calculations

» Configuration Interaction

* Infrared Spectra

* UV Spectra

* Plotting

General Operations

The following script commands involve the general operation of HyperChem
including things that don't easily fit into other categories. Thus, in this cate-
gory we have the script commands for a single-point calculation and for sol-
vation using the periodic box. Other commands have to do with default or
custom menus, printing, and the operation of the Cancel button.

Single Point
calculation-method Variable, Read/Write, Type: enum.
do-single-poirt: Command, Arg list: (void).
total-energy: Variable, Readonly, Type: float in range (-1e+010 .. 1e+010).

204

Appendix A

The Classes

Solvation

periodic-boundaries Variable, Read/Write, Type: boolean.
periodic-box-size Variable, Readonly, Type: (unknown).
solvate-systemCommand, Arg list: (void).

solvate-system-in-this-boxCommand, Arg list: float, float, float.

Customization

hide-toolbar: Variable, Read/Write, Type: boolean.
load-default-menu Command, Arg list: (void).
load-user-menu Command, Arg list: string.
switch-to-user-menu Command, Arg list: (void).
custom-title: Variable, Read/Write, Type: string.

factory-settings Command, Arg list: (void).

Printing
print : Command, Arg list: (void).

printer-background-white : Variable, Read/Write, Type: boolean.

Other
cancel-menu Variable, Read/Write, Type: boolean.
do-vibrational-analysis: Command, Arg list: (void).
help: Command, Arg list: string.
hide-messagesvariable, Read/Write, Type: boolean.
Cursors

The following script commands have to do with the operation of the various
cursors apart from the drawing and selection cursor. The remaining cursors
are associated with rotation, translation, zooming, and clipping operations.
These have parameters that describe, for example, the unit of rotation when
the rotation cursor is dragged in the work space (x-y-rotation-cursor). alterna-
tively, there is a unit or rotation when the appropriate keyboard equivalent is

Classification of Hcl Commands 205

The Classes

used (x-y-rotation-icon-step). These parameters can be set via the <File/Pref-
erences...> dialog box or via the following script commands.

Mouse Mode

mouse-mode Variable, Read/Write, Type: enum

Clipping

clip-cursor: Variable, Read/Write, Type: float in range (0 .. 1000).
clip-icon-step Variable, Read/Write, Type: float in range (0 .. 1000).
back-clip: Variable, Read/Write, Type: float

front-clip : Variable, Read/Write, Type: float.

Rotation

x-y-rotation-cursor: Variable, R/W, Type: float angle in range (0 .. 3600).
x-y-rotation-icon-step: Variable, R/W, Type: float angle in range (0 .. 3600).
z-rotation-cursor: Variable, R/W, Type: float angle in range (0 .. 3600).

z-rotation-icon-step Variable, R/W, Type: float angle in range (0 .. 3600).

Translation

Zoom

Selections

x-y-translation-icon-step Variable, R/W, Type: float in range (0 .. 1000).
z-translation-cursor: Variable, R/W, Type: float in range (0 .. 1000).

z-translation-icon-step Variable, R/W, Type: float in range (O .. 1000).

zoom-cursor. Variable, Read/Write, Type: float in range (1 .. 1000).
zoom-icon-step Variable, Read/Write, Type: float in range (1 .. 1000).

The following script commands have to do with making selections, a funda-
mental operation. HyperChem generally operates on a selection rather than
on the whole molecular system and these selection scripts are often used in
conjunction with other operations.

206

Appendix A

The Classes

Select Options
multiple-selections Variable, Read/Write, Type: boolean.
select-sphereVariable, Read/Write, Type: boolean.

selection-target Variable, Read/Write, Type: enum

Select
select-none Command, Arg list: (void).
select-atom Command, Arg list: integer, integer.
select-residue Command, Arg list: integer, integer.
un-select-atom Command, Arg list: integer, integer.

un-select-residue Command, Arg list: integer, integer.

Ask About Selection
selected-atom-countVariable, Readonly, Type: integer.
selected-atom Variable, Readonly, Type: vector of integer, integer.

selection-value Variable, Readonly, Type: float.

Operate on Selection

delete-selected-atom€Command, Arg list: (void).

reorder-selections Variable, Read/Write, Type: boolean.

Named Selections
name-selection Command, Arg list: string.
delete-named-selectionCommand, Arg list: string.
named-selection-countVariable, Readonly, Type: integer.
named-selection-nameVariable, Readonly, Type: vector of string.
named-selection-valueVariable, Readonly, Type: vector of float.

select-name Command, Arg list: string.

Other

selection-color Variable, Read/Write, Type: enum

Classification of Hcl Commands 207

The Classes

File Operations

The following script commands deal with operations on the molecule files
and the import/export files.

Molecule File

file-format: Variable, Read/Write, Type: string.
path: Variable, Read/Write, Type: string.
current-file-name: Variable, Readonly, Type: string.
open-file: Command, Arg list: string.

merge-file: Command, Arg list: string.

write-file : Command, Arg list: string.

delete-file Command, Arg list: string.

Options
file-needs-savedVariable, Read/Write, Type: boolean.

velocities-in-hin-file: Variable, Read/Write, Type: boolean.

view-in-hin-file: Variable, Read/Write, Type: boolean.

PDB File

connectivity-in-pdb-file: Variable, Read/Write, Type: boolean.
hydrogens-in-pdb-file: Variable, Read/Write, Type: boolean.

non-standard-pdb-names Variable, Read/Write, Type: boolean.

Import/Export

import-dipole: Variable, Read/Write, Type: boolean.
import-ir: Variable, Read/Write, Type: boolean.
import-orbitals: Variable, Read/Write, Type: boolean.
import-property-file: Command, Arg list: string.

import-uv: Variable, Read/Write, Type: boolean.

208 Appendix A

The Classes

export-dipole: Variable, Read/Write, Type: boolean.
export-ir: Variable, Read/Write, Type: boolean.
export-orbitals: Variable, Read/Write, Type: boolean.
export-property-file: Command, Arg list: string.

export-uv: Variable, Read/Write, Type: boolean.

Other

file-diff-message Command, Arg list: string, string, string, string.

write-atom-map: Command, Arg list: string.

Scripts

The following script commands have to do with the process of scripting itself.
They are used to open script files, control execution of script commands, or
control the process of notification. Certain other scripts control the OMSG
output of a query or manage the menu items inserted under the script menu.
Finally, values of HSVs can be pushed and popped with a stack.

Script Files

read-script: Command, Arg list: string.
read-tcl-script: Command, Arg list: string.
compile-script-file: Command, Arg list: string, string.

read-binary-script: Command, Arg list: string.

Execution

guery-value: Command, Arg list: .
execute-string Command, Arg list: string.
pause-for Command, Arg list: integer in range (0 .. 32767).

exit-script: Command, Arg list: (void).

Classification of Hcl Commands 209

The Classes

Notifications
notify-on-update: Command, Arg list: string.
cancel-notify. Command, Arg list: string.
notify-with-text : Variable, Read/Write, Type: boolean.

variable-changed Command, Arg list: string.

OMSGs

append-omsgs-to-file Command, Arg list: string.
omsg-file Variable, Read/Write, Type: string.
omsgs-not-to-file Command, Arg list: (void).
omsgs-to-file Command, Arg list: string.

guery-response-has-tagVariable, Read/Write, Type: boolean.

Menus

change-user-menuitemCommand, Arg list: integer, string, string.
script-menu-caption: Variable, Read/Write, Type: vector of string.
script-menu-checked Variable, Read/Write, Type: vector of boolean.
script-menu-command Variable, Read/Write, Type: vector of string.
script-menu-enabled Variable, Read/Write, Type: vector of boolean.
script-menu-help-file: Variable, Read/Write, Type: vector of string.
script-menu-help-id: Variable, Read/Write, Type: vector of integer.
script-menu-in-use Variable, Read/Write, Type: vector of boolean.

script-menu-messageVariable, Read/Write, Type: vector of string.

Stack Operation
pop-no-value Command, Arg list: string.
pop-value Command, Arg list: string.
push: Command, Arg list: string.

Other

execute-client Command, Arg list: string.

210 Appendix A

The Classes

execute-hyperchem-clientCommand, Arg list: string.
messageVariable, Read/Write, Type: string.

one-line-arrays Variable, Read/Write, Type: boolean.

Info
The following script commands are part of a capability for enquiring and
obtaining information about a specific HSV.
info-access Variable, Readonly, Type: string.
info-enum-id-of: Variable, Readonly, Type: string.
info-enum-list: Variable, Readonly, Type: string.
info-factory-setting: Variable, Readonly, Type: string.
info-id-of : Variable, Readonly, Type: integer.
info-type-of: Variable, Readonly, Type: string.
info-type-of-element Variable, Readonly, Type: string.

info-variable-target: Variable, Read/Write, Type: string.

Errors

The following script commands deal with errors.
no-source-refs-in-errors Command, Arg list: (void).
source-refs-in-errors Command, Arg list: (void).
script-refs-in-errors: Variable, Read/Write, Type: boolean.
error : Variable, Read/Write, Type: string.
errors-are-not-omsgs Command, Arg list: (void).
errors-are-omsgs Command, Arg list: (void).
ignore-script-errors: Variable, Read/Write, Type: boolean.

hide-errors: Variable, Read/Write, Type: boolean.

Classification of Hcl Commands 211

The Classes

Logging
The following script commands have to do with the process of creating a log
file.
start-logging: Command, Arg list: string, boolean.
stop-logging Command, Arg list: (void).
log-comment Command. Arg list: string.
mechanics-print-level Variable, Read/Write, Type: integer in range (0 .. 9).
guantum-print-level: Variable, Read/Write, Type: integer in range (0 .. 9).
Auxiliary

The following script commands defy simple classification.

Declarations
declare-integer Command, Arg list: string.
declare-string: Command, Arg list: string.
Warnings

warning: Variable, Read/Write, Type: string.

warning-type: Variable, Read/Write, Type: enum(none, log, message).
hide-warnings: Variable, Read/Write, Type: boolean.
warnings-are-not-omsgs Command, Arg list: void.

warnings-are-omsgs Command, Arg list: void.

Screen Output
status-messageVariable, Read/Write, Type: string.
request Command, Arg list: string.

Version

version: Variable, Readonly, Type: string.

serial-number: Variable, Readonly, Type: string.

212 Appendix A

The Classes

Other

print-variable-list : Command, Arg list: string.

toggle Command, Arg list: string.

Viewing

The following script commands are associated with the manipulations deter-
mining what one sees on the screen excluding the specific molecular render-
ing. Some of them are simply viewing transformations. Others move the mol-

ecules or show attributes of the molecules.

Alignment
align-molecule Command, Arg list: list of enums
align-viewer. Command. Arg list: enum.
Redisplay
global-inhibit-redisplay : Variable, Readonly, Type: boolean.
inhibit-redisplay : Variable, Read/Write, Type: boolean.
Rotation
rotate-molecules Command, Arg list: enum, float.
rotate-viewer. Command, Arg list: enum, float.
Translation

translate-selection Command, Arg list: float, float, float.
translate-view. Command, Arg list: float, float, float.
translate-whole-moleculesVariable, Read/Write, Type: boolean.
translate-merged-systers: Variable, Read/Write, Type: boolean.

use-fast-translation Variable, Read/Write, Type: boolean.

Window

window-height: Variable, Read/Write, Type: integer.

Classification of Hcl Commands 213

The Classes

window-width: Variable, Read/Write, Type: integer.

Other

show-perspective Variable, Read/Write, Type: boolean.
wall-eyed-stereo Variable, Read/Write, Type: boolean.
zoom Command, Arg list: float in range (0.01 .. 50).
show-axes Variable, Read/Write, Type: boolean.

show-dipoles Variable, Read/Write, Type: boolean.

Rendering

The following script commands affect the molecular rendering of the mole-
cule in the workspace.

General Options
bond-spacing-display-ratia Variable, R/W, Type: float in range (0 .. 1).
cpk-max-double-buffer-atoms Variable, Read/Write, Type: integer.
dot-surface-angle Variable, R/W, Type: float angle in range (-90 .. 90).
double-buffered-display: Variable, Read/Write, Type: boolean.

render-method: Variable, Read/Write, Type: enum.

Specific Rendering Options
balls-highlighted: Variable, R/W, Type: boolean
balls-radius-ratio: Variable, R/W, Type: float in range (0 .. 1).
balls-shaded Variable, R/W, Type: boolean
cylinders-color-by-element Variable, R/W, Type: boolean
cylinders-width-ratio : Variable, R/W, Type: float in range (0 .. 1).
spheres-highlighted Variable, R/W, Type: boolean
spheres-shadedVariable, R/W, Type: boolean
sticks-width: Variable, R/W, Type: integer in range (0 .. 25)

214 Appendix A

The Classes

Show - Don’t Show

show-hydrogen-bonds Variable, Read/Write, Type: boolean.
show-hydrogens Variable, Read/Write, Type: boolean.
show-isosurface Command, Arg list: boolean.
show-multiple-bonds Variable, Read/Write, Type: boolean.
show-periodic-box Variable, Read/Write, Type: boolean.
show-ribbons Variable, Read/Write, Type: boolean.
show-stereo Variable, Read/Write, Type: boolean.
show-stereochem-wedge¥ariable, Read/Write, Type: boolean.

show-vibrational-vectors: Variable, Read/Write, Type: boolean.

Coloring and Labeling

The following script commands affect the showing of labels for atoms or res-
idues as well as the colors that appear on the screen for various objects.

Color

atom-color; Variable, Read/Write, Type: array of enum.
bond-color: Variable, Read/Write, Type: enum.
color-element Command, Arg list: integer, enum.
color-selection Command, Arg list: string.
negatives-color Variable, Read/Write, Type: enum.
positives-color. Variable, Read/Write, Type: enum.
revert-element-colors Command, Arg list; (void).

window-color: Variable, Read/Write, Type: enum.

Labels

atom-label-text Variable, Readonly, Type: array of string.

atom-labels Variable, Read/Write, Type: enum.

Classification of Hcl Commands 215

The Classes

Images
The following script commands deal with getting bitmaps and metafiles
(images) of molecules into the clipboard or into a file.
image-color. Variable, Read/Write, Type: boolean.
image-destination-clipboard Variable, Read/Write, Type: boolean.
image-destination-file Variable, Read/Write, Type: boolean.
image-file-bitmap: Variable, Read/Write, Type: boolean.
image-file-bitmapRGB: Variable, Read/Write, Type: boolean.
image-file-metafile Variable, Read/Write, Type: boolean.
image-include-cursor. Variable, Read/Write, Type: boolean.

image-source-window Variable, Read/Write, Type: enum.

Model Building

The following script commands deal with aspect of drawing and creating
molecules with the model builder.

Options
allow-ions: Variable, Read/Write, Type: boolean.
explicit-hydrogens Variable, Read/Write, Type: boolean.
default-element Variable, Read/Write, Type: integer in range (0 .. 103).

Drawing
create-atom Command, Arg list: integer in range (0 .. 103).
set-bond: Command, Arg list: integer, integer, integer, integer, enum.

delete-atom Command, Arg list: integer, integer.

Constraints

constrain-geometry. Command, Arg list: string.
constrain-bond-length Command, Arg list: float in range (0 .. 100).

constrain-bond-angle Command, Arg list: float angle in range (-360 .. 360).

216 Appendix A

Other

The Classes

constrain-bond-torsion: Command, Arg list: angle in range (-360 ... 360)
unconstrain-bond-length Command, Arg list: (void).
unconstrain-bond-angle Command, Arg list: (void).

unconstrain-bond-torsion: Command, Arg list: (void).

is-ring-atom: Variable, Readonly, Type: array of boolean.

neighbors Variable, Readonly, Type: array of (unknown).

Stereochemistry

The following script commands deal with aspects of creating and showing
specific stereochemistry.

builder-enforces-stereo Variable, Read/Write, Type: boolean.
change-stereochemCommand, Arg list: integer, integer.

chirality : Variable, Read/Write, Type: array of string.
constrain-bond-down Command, Arg list: integer, integer, integer, integer.
constrain-bond-up: Command, Arg list: integer, integer, integer, integer.
constrain-change-stereoCommand, Arg list: integer, integer.
constrain-fix-sterea Command, Arg list: integer, integer.
cycle-atom-stereo Command, Arg list: integer, integer.

cycle-bond-stereo Command, Arg list: integer, integer, integer, integer.
remove-all-stereo-constraints Command, Arg list: (void).

remove-stereo-constraint Command, Arg list: integer, integer.

Atom Properties

Labels

The following script commands deal with changing or displaying properties
of individual atoms perhaps associated with labels.

atom-charge Variable, Read/Write, Type: array of float.

atom-mass Variable, Read/Write, Type: array of float.

Classification of Hcl Commands 217

The Classes

atom-name Variable, Read/Write, Type: array of string.
atom-type: Variable, Read/Write, Type: array of string.
atomic-number: Variable, Read/Write, Type: array of integer.
atomic-symbot Variable, Readonly, Type: array of string.
set-atom-charge Command, Arg list: float in range (-100 .. 100).

set-atom-type Command, Arg list: string.

Coordinates and Velocities

coordinates Variable, Read/Write, Type: array of float, float, float.
set-velocity Command, Arg list: enum, float, float, float.

velocities Variable, Read/Write, Type: array of float, float, float
set-bond-angle Command, Arg list: float angle in range (O .. 180).
set-bond-length Command, Arg list: float in range (0 .. 3200).

set-bond-torsion Command, Arg list: float angle in range (-360 .. 360).

Other

coordination: Variable, Readonly, Type: array of integer.

Molecule Properties

The following script commands deal with some properties of molecules or the
atoms in molecules.

Charge-Multiplicity
multiplicity : Variable, Read/Write, Type: integer in range (1 .. 6).
guantum-total-charge: Variable, R/W, Type: integer

Counts

atom-count Variable, Readonly, Type: vector of integer.

molecule-count Variable, Readonly, Type: integer.

Properties

dipole-moment Variable, R/W , Type: float in range (-1e+10 .. 1e+10).

218 Appendix A

The Classes

dipole-moment-componentsVariable, R/W, Type: float, float, float.
heat-of-formation: Variable, R only , Type: float in range (-1e+10 .. 1e+10).

moments-of-inertia: Variable, Readonly, Type: float float float.

Back Ends

The following script commands deal with the operation of the computational
back ends and communication with them.

Basic
backend-active Variable, Read/Write, Type: boolean.
backend-communications Variable, Read/Write, Type: enum.
Large Communication Structures

atom-info: Variable, Readonly, Type: (unknown).
mechanics-info Variable, Readonly, Type: (unknown).

mechanics-data Variable, Readonly, Type: (unknown).

Remote Back Ends

backend-host-name Variable, Read/Write, Type: string.
backend-process-countVariable, R/W, Type: integer in range (1 .. 32).
backend-user-id Variable, Read/Write, Type: string.

backend-user-passwordVariable, Read/Write. Type: string.

Molecular Mechanics Calculations

The following script commands deal with computations in molecular
mechanics.

Method

molecular-mechanics-methodVariable, Read/Write, Type: enum.

is-extended-hydrogen Variable, Readonly, Type: array of boolean.

Classification of Hcl Commands 219

The Classes

keep-atom-chargesVariable, Read/Write, Type: boolean.

Energy Components

bend-energy Variable, Readonly, Type: float in range (-1e+10 .. 1e+10).
stretch-energy Variable, Readonly, Type: float in range (-1e+10 .. 1e+10).
torsion-energy. Variable, Readonly, Type: float in range (-1e+10 .. 1e+10).
nonbond-energy Variable, R only, Type: float in range (-1e+10 .. 1e+10).
estatic-energy Variable, Readonly, Type: float in range (-1e+10 .. 1e+10).
hbond-energy Variable, Readonly, Type: float in range (-1e+10 .. 1e+10).

Cutoffs

cutoff-type: Variable, Read/Write, Type: enum.
cutoff-inner-radius : Variable, Read/Write, Type: floatin range (0 .. 1e+10).

cutoff-outer-radius: Variable, Read/Write, Type: float in range (0 .. 1e+10).

Scale Factors

mechanics-dielectric Variable, R/W, Type: enum, enum, enum, enum.
mechanics-dielectric-scale-factarVariable, R/W, Type: four floats.
mechanics-electrostatic-scale-factoNariable, R/W, Type: four floats.
mechanics-mmp-electrostaticsVariable, Read/Write, Type: enum.

mechanics-van-der-waals-scale-factoVariable, R/W, Type: four floats.

Parameters

parameter-set-changedVariable, Read/Write, Type: boolean.

use-parameter-set:Command,Arg list: string.

Amino Acids and Nucleic Acids

The following script commands pertain to amino acid templates and the con-
struction of peptides or to nucleic acid templates and the construction of
DNA-like structures.

220 Appendix A

The Classes

Amino Acids

add-amino-acid Command, Arg list: string.

amino-alpha-helix Command, Arg list: (void).
amino-beta-sheetCommand, Arg list: (void).

amino-isomer. Variable, Read/Write, Type: enum.

amino-omega Variable, Read/Write, Type: float angle in range (-360 .. 360).
amino-phi: Variable, Read/Write, Type: float angle in range (-360 .. 360).
amino-psi. Variable, Read/Write, Type: float angle in range (-360 .. 360).

Nucleic Acids

add-nucleic-acid Command, Arg list: string.

nucleic-a-form: Command, Arg list: (void).

nucleic-alpha Variable, Read/Write, Type: float angle in range (-360 .. 360).
nucleic-b-form: Command, Arg list: (void).

nucleic-backwards Variable, Read/Write, Type: boolean.

nucleic-beta Variable, Read/Write, Type: float angle in range (-360 .. 360).
nucleic-chi: Variable, Read/Write, Type: float angle in range (-360 .. 360).
nucleic-delta Variable, Read/Write, Type: float angle in range (-360 .. 360).
nucleic-double-strand Variable, Read/Write, Type: boolean.
nucleic-epsilon Variable, R/W, Type: float angle in range (-360 .. 360).
nucleic-gamma Variable, R/W, Type: float angle in range (-360 .. 360).
nucleic-sugar-pucker. Variable, Read/Write, Type: enum.

nucleic-z-form: Command, Arg list: (void).

nucleic-zeta Variable, Read/Write, Type: float angle in range (-360 .. 360).

General Residue
mutate-residue Command, Arg list: string.
residue-charge Variable, Readonly, Type: array of float.

residue-coordinates Variable, Readonly, Type: array of float, float, float.

Classification of Hcl Commands 221

The Classes

residue-count Variable, Readonly, Type: vector of integer.
residue-label-text Variable, Readonly, Type: array of string.
residue-labels Variable, Read/Write, Type: enum.

residue-name Variable, Readonly, Type: array of string.

Molecular Dynamics and Monte Carlo

Basic

The following script commands pertain to the two type of molecular dynam-
ics (normal and Langevan) and the very closely related Mont eCarlo calcula-
tions.

do-molecular-dynamics Command, Arg list: (void)
do-langevin-dynamics Command, Arg list: (void)
do-monte-carla Command, Arg list: (void)
dynamics-restart Variable, Read/Write, Type: boolean.
dynamics-average-period Variable, R/W, Type: integer.
dynamics-collection-period Variable, R/W, Type: integer.

screen-refresh-period Variable, Read/Write, Type: integer.

Run Parameters

dynamics-bath-relaxation-time Variable, R/W, Type: float.
dynamics-constant-temp Variable, Read/Write. Type: boolean.
dynamics-cool-time Variable, Read/Write, Type: float.
dynamics-heat-time Variable, Read/Write, Type: float.
dynamics-final-temp: Variable, R/W, Type: float.
dynamics-friction-coefficient: Variable, R/W, Type: float
dynamics-run-time: Variable, Read/Write, Type: float.
dynamics-seed¥Variable, Read/Write, Type: integer.
dynamics-simulation-temp Variable, Read/Write, Type: float.
dynamics-starting-temp Variable, Read/Write, Type: float.
dynamics-temp-step Variable, Read/Write, Type: float.

222

Appendix A

The Classes

dynamics-time-step Variable, Read/Write, Type: float.

Averaging
append-dynamics-averageCommand, Arg list: string.
append-dynamics-graph Command, Arg list: string.
dynamics-info-elapsed-timeVariable, R only, Type: float.
dynamics-info-kinetic-energy. Variable, Readonly, Type: float.
dynamics-info-last-update Variable, Readonly, Type: boolean.
dynamics-info-potential-energy Variable, Readonly, Type: float.
dynamics-info-temperature Variable, Readonly, Type: float.

dynamics-info-total-energy Variable, Readonly, Type: float.

Playback

dynamics-playback Variable, Read/Write, Type: enum.
dynamics-playback-end Variable, Read/Write, Type: integer.
dynamics-playback-period Variable, Read/Write, Type: integer.
dynamics-playback-start Variable, Read/Write, Type: integer.
dynamics-snapshot-filenameVariable, Read/Write, Type: string.

dynamics-snapshot-period:Variable, Read/Write, Type: integer.

Monte Carlo Specific

monte-carlo-cool-stepsVariable, Read/Write, Type: float
monte-carlo-heat-stepsVariable, Read/Write, Type: float
monte-carlo-info-acceptance-ratio Variable, Readonly, Type: float
monte-carlo-max-delta Variable, R/W, Type: float

monte-carlo-run-steps Variable, R/W, Type: float

Optimization

The following script commands deal with facets of geometry optimization.

Classification of Hcl Commands 223

The Classes

Basic
do-optimization: Command, Arg list: (void).
optim-algorithm : Variable, Read/Write, Type: enum.
optim-converged Variable, Readonly, Type: boolean.
optim-convergence Variable, Read/Write, Type: float in range (0 .. 100).
optim-max-cycles Variable, Read/Write, Type: integer in range (1 .. +Inf).

rms-gradient: Variable, Readonly, Type: float in range (-1e+10 .. 1e+10).

Restraints

restraint: Command, Arg list: string, float, float.
restraint-tether: Command, Arg list: complex.
use-no-restraints Command, Arg list: (void).

use-restraint Command, Arg list: string, boolean.

General Quantum Mechanics

The following script commands deal with facets of quantum mechanical com-
putations that are independent of the quantum mechanical method, whether it
is semi-empirical or ab initio.

Input Parameters

do-gm-calculation: Variable, Read/Write, Type: boolean.

uhf: Variable, Read/Write, Type: boolean.
accelerate-scf-convergencé/ariable, Read/Write, Type: boolean.
alpha-orbital-occupancy. Variable, Read/Write, Type: vector of float.
beta-orbital-occupancy Variable, Read/Write, Type: vector of float.
excited-state Variable, Read/Write, Type: boolean.

max-iterations: Variable, Read/Write, Type: integer in range (1 .. 32767).

scf-convergenceVariable, Read/Write, Type: float in range (O .. 100).

Output Results

orbital-count: Variable, Readonly, Type: integer.

224 Appendix A

The Classes

alpha-scf-eigenvector Variable, Read/Write, Type: vector of float-list.
beta-scf-eigenvectorVariable, Read/Write, Type: vector of float-list.
scf-orbital-energy. Variable, Read/Write, Type: vector of float.
orbital-results: Variable, Read/Write, Type: vector of float-list.

scf-electronic-energy Variable, Readonly, Type: float.

Semi-empirical Calculations

The following script commands deal with the input parameters required to
specifically perform semi-empirical calculations and with their results. Some
of the input parameteters for semi-empirical methods are essentially part of
the*.abp parameter files.

General

semi-empirical-method Variable, Read/Write, Type: enum.
d-orbitals-on-second-row Variable, Read/Write, Type: boolean.
scf-atom-energy Variable, Readonly, Type: float.
scf-binding-energy. Variable, Readonly, Type: float.

scf-core-energy Variable, Readonly, Type: float.

Huckel

huckel-constant Variable, Read/Write, Type: float in range (0 .. 10).
huckel-scaling-factor. Variable, R/W, Type: float in range (0 .. 200000).
huckel-weighted Variable, Read/Write, Type: boolean.

ZINDO
zindo-1-pi-pi: Variable, Read/Write, Type: float in range (0 .. 2).
zindo-1-sigma-sigma Variable, Read/Write, Type: float in range (O .. 2).
zindo-s-pi-pi: Variable, Read/Write, Type: float in range (0 .. 2).

zindo-s-sigma-sigmaVariable, Read/Write, Type: float in range (O .. 2).

Classification of Hcl Commands 225

The Classes

Ab Initio Calculations

The following script commands pertain to performing ab initio calculations -
their inputs and their results.

Input Options
abinitio-calculate-gradient: Variable, Read/Write, Type: boolean.
abinitio-d-orbitals : Variable, Read/Write, Type: boolean.
abinitio-f-orbitals : Variable, Read/Write, Type: boolean.
abinitio-direct-scf: Variable, Read/Write, Type: boolean.
abinitio-mo-initial-guess: Variable, Read/Write, Type: enum.
abinitio-mp2-correlation-energy: Variable, Read/Write, Type: boolean.
abinitio-mp2-frozen-core: Variable, Read/Write, Type: boolean.
abinitio-scf-convergence Variable, R/W, Type: float in range (0 .. 100).

abinitio-use-ghost-atoms Variable, Read/Write, Type: boolean.

Basis Set

assign-basissetCommand, Arg list: string.
atom-basisset Variable, Read/Write, Type: array of string.
atom-extra-basisset Variable, Read/Write, Type: array of string, float.

basisset-countVariable, Readonly, Type: integer.

2-electron Integrals

abinitio-buffer-size: Variable, Read/Write, Type: integer.
abinitio-cutoff: Variable, Read/Write, Type: float in range (0 .. 1e+10).
abinitio-integral-format : Variable, Read/Write, Type: enum.

abinitio-integral-path : Variable, Read/Write, Type: string.

Results

mp2-energy. Variable, Readonly, Type: float.

226 Appendix A

The Classes

Configuration Interaction
The following script commands are relevant to post-SCF configuration inter-
action calculations.
ci-criterion : Variable, Read/Write, Type: enum.
ci-excitation-energy. Variable, Read/Write, Type: floatin range (0 .. 10000).
ci-occupied-orbitals Variable, R/W, Type: integer in range (0 .. 32767).
ci-unoccupied-orbitals Variable, R/W, Type: integer in range (0 .. 32767).

configuration-interaction: Variable, Read/Write, Type: enum.

Infrared Spectra

The following script commands are relevant to the calculation and display of
vibrational spectra.

Animations

animate-vibrations: Variable, Read/Write, Type: boolean.
ir-animate-amplitude: Variable, Read/Write, Type: float in range (0 .. 10).
ir-animate-cycles Variable, Read/Write, Type: integer in range (0 .. +Inf).

ir-animate-steps Variable, Read/Write, Type: integer in range (3 .. +Inf).

Spectra

ir-band-count: Variable, Read/Write, Type: integer.

vibrational-mode: Variable, Read/Write, Type: integer.

ir-frequency: Variable, Read/Write, Type: vector of float.

ir-intensity : Variable, Read/Write, Type: vector of float.
ir-intensity-components Variable, R/W, Type: vector of float, float, float.

ir-normal-mode: Variable, Read/Write, Type: vector of float-list.

UV Spectra

The following script commands are relevant to the calculation of electronic
spectra.

Classification of Hcl Commands 227

The Classes

Plotting

configuration: Variable, Read/Write, Type: integer.

uv-band-count Variable, Read/Write, Type: integer.
uv-dipole-components Variable, Read/Write, Type: vector of float-list.
uv-energy. Variable, Read/Write, Type: vector of float.
uv-oscillator-strength: Variable, Read/Write, Type: vector of float.
uv-spin: Variable, Read/Write, Type: vector of float.

uv-total-dipole: Variable, Read/Write. Type: vector of float.

uv-transition-dipole: Variable, R/W, Type: vector of float, float, float.

the following script commands are relevant to the plotting of 2D and 3D con-
tours and renderings of orbitals, electron density, spin density and electro-
static potentials.

General Options

2D

graph-beta: Variable, Read/Write, Type: boolean.
graph-data-type: Variable, Read/Write, Type: enum.
graph-orbital-selection-type Variable, Read/Write, Type: enum.

graph-orbital-offset: Variable, Read/Write, Type: integer in range (O ..
+Inf).

do-gm-graph: Variable, Read/Write, Type: boolean.
graph-contour-increment: Variable, Read/Write, Type: float.
graph-contour-increment-other: Variable, Read/Write, Type: boolean.
graph-contour-levels Variable, Read/Write, Type: integer.
graph-contour-start: Variable, Read/Write, Type: float.

graph-contour-start-other: Variable, Read/Write, Type: boolean.

228

Appendix A

3D

Grid

The Classes

do-gm-isosurface Variable, Read/Write, Type: boolean.
isosurface-grid-step-sizeVariable, R/W, Type: float in range (0 .. 1e+10)
isosurface-hide-moleculeVariable, Read/Write, Type: boolean
isosurface-map-function Variable, Read/Write, Type: boolean
isosurface-map-function-display-legendVariable, R/W, Type: boolean
isosurface-map-function-range Variable, Read/Write, Type: float, float
isosurface-mesh-quality Variable, Read/Write, Type: enum
isosurface-render-method Variable, Read/Write, Type: enum
isosurface-threshold Variable, Read/Write, Type: float.
isosurface-transparency-levelVariable, R/W, Type: float in range (0 .. 1)
isosurface-x-min Variable, Read/Write, Type: float.
isosurface-x-nodesVariable, R/W, Type: integer in range (0 .. 32767).
isosurface-y-min Variable, Read/Write, Type: float.
isosurface-y-nodesVariable, R/W, Type: integer in range (0 .. 32767).
isosurface-z-min Variable, Read/Write, Type: float.

isosurface-z-nodesVariable, R/W, Type: integer in range (0 .. 32767).

graph-data-row: Variable, Readonly, Type: vector of float-list.
graph-horizontal-grid-size: Variable, R/W, Type: integer in (2 .. 8192).
graph-plane-offset Variable, Read/Write, Type: float.
graph-vertical-grid-size: Variable, R/W, Type: integer in range (2 .. 8192).
grid-max-value: Variable, Readonly, Type: float.

grid-min-value: Variable, Readonly, Type: float.

isosurface-grid-step-sizeVariable, R/W, Type: float in range (0 .. 1e+10).

Classification of Hcl Commands 229

The Classes

230 Appendix A

Appendix B
Listing of Tcl Commands

The Tcl Commands

In this appendix we give a very brief alphabetic list of the most important Tcl
commands and functions. They are listed with their arguments, with optional
arguments in angular brackets. However, no detailed description of each

command is given here and a reference book on Tcl is strongly suggested.

abs (x)

acos (x)

append varName value <value ...>
asin (x)

atan(x)

atan2 (x,y)

break

catch command <varName>
cd <dirName>

ceil (x)

close fileld

concat <list list ...>

continue

cos (x)

cosh (x)

double (i)

eof fileld

231

The Tcl Commands

error message <info> <code>
eval arg <arg arg ...>

exec <-keepnewline> <- -> <arg ..>
exit <code>

exp ()

expr arg <arg arg ...>

file atime name

file dirname name

file executable name

file exists name

file extension name

file isdirectory name

file isfile name

file Istat name arrayName
file mtime name

file option name <arg arg ...>
file owned name

file readable name

file readlink name

file rootname name

file size name

file stat name arrayName

file tail name

file type name

file writable name

floor (x)

flust file Id

fmod (Xx,y)

for init test reinit body

232 Appendix B

The Tcl Commands

foreach varName list body

format formatString <value value ...>

gets file Id <varName>

glob <-nocomplain> <- -> pattern <pattern ...>
global namel <name2 ...>

hypot (x,y)

if testl body1l <elseif test2 body2 elseif ...> <else bodyn>
incr varName <increment>

int (x)

join list <joinString>

lappend varName value <value ...>

lindex list index

linsert list index value <value ...>

list <value value...>

llength list

log (x)

l0g10 (x)

Irange list first last

Ireplace list first last <value value ...>

Isearch <-exact> <-glob> <-regexp> list pattern

Isort <-ascii> <-integer> <-real> <-command command>\ <-increasing> <-
decreasing> list

open | command <access>
open name <access>

pid <fileld>

pow (x.y)

proc name argList body

puts <-nonewline> <fileld> string

pwd

Listing of Tcl Commands 233

The Tcl Commands

read <-nonewline> fileld
read fileld numBytes

regexp <-indices> <-nocase> <- -> exp string <matchVar>\ <subVar subVar
>

regsub <-all> <-nocase> <- -> exp string subSpec varName
return <-code code> <-errorinfo info> <-errorcode code> <string>
return <options> <value>

round (X)

scan string format varName <varName varName ...>
seek fileld offset <origin>

set varName <value>

sin (x)

sinh (x)

source fileName

split string <splitChars>

sqrt (x)

string compare stringl string2

string first string1 string2

string index string charlndex

string last stringl string2

string length string

string match pattern string

string range string first last

string tolower string

string toupper stsring

string trim string <chars>

string trimleft string <chars>

string trimright striing <chars>

switch <options> string pattern body <pattern body ...>

234 Appendix B

The Tcl Commands

switch <options> string (pattern body <pattern body ...>)
tan (x)

tanh (x)

tell fileld

unset varName <varName varName ...>

uplevel <level> arg <arg arg ...>

upvar <level> otherVarl my Varl <otherVar2 myVvar2 ...>

while test body

Listing of Tcl Commands 235

The Tcl Commands

236 Appendix B

Appendix C
Classification of HAPI Calls

This appendix lists each of the HAPI calls and gives details as to their use,
their declaration and their parameters. The HAPI calls are classified accord-
ing to their use. Visual Basic Arguments listed as N/A can be inferred from
the corrsponding C/C++ call.

The API functions

Functions for Initialization and Termination
The functions in this group are responsible for initialization of the HAPI

library, establishing a connection with HyperChem and termination of the
connection.

hclnitAPI

The function performs initialization of the HAPI.

API header

BOOL stdcall hcInitAPI()

FORTRAN interface

logical function hfInitAPI ()

VISUAL BASIC declaration

Declare Function hbInitAPI Lib "hapi.dll" Alias "hcInitAPI" () As Long

237

The API functions

Parameters

The function takes no parameters.

Return Value

The function returns TRUE if initialization was successful. The function
returns FALSE if the user application is already connected with HyperChem.

Remarks

There is no need for explicitly calling the function if you use any of the rec-
ommended methods described in the section “How to use the CDK API" of
Chapter 11. Both LoadHAPI and automatic DLL initialization code call the
function. However the call may be required if you perform your own Run-
Time Load for an unusual application.

hcConnect

The function establishes a link between the user application and HyperChem.
It must be called before ANY other function is called except for auxiliary func-
tions.

API header

BOOL stdcall hcConnect (LPSTR 1lszCmd) ;

FORTRAN interface

logical function hfConnect (init string)
character* (*) init string

VISUAL BASIC declaration

Declare Function hbConnect Lib "hapi.dll" Alias "hcConnect" (ByVal command As
String) As Long

Parameters

C/C++: LPSTR IszCmd - command line received from HyperChem or empty string (
“"). See Remarks.

238 Appendix C

FORTRAN:

VB:

The API functions

character*(*) init_string -command line received from HyperChem or empty
string (Fortran string). See Remarks.

command - VB variable of string type

Return Value

The function returns TRUE(1) when it finds HyperChem and establishes a
connection to it. When it fails, it returns FALSE(O).

Remarks

The command line string IszCmd is received from HyperChem when the
application is called via the ‘execute-hyperchem-client’ script command. The
string contains the information required to connect the user application with
a proper instance of HyperChem. When HyperChem initiates the user appli-
cation after issuing a script command:

execute-hyperchem-client userapp.exe

the user application receives a command line parameter. The parameter has
the form:

-hinst:ChemServer-xxxx

For example:

-hinst:ChemServer-510e

The user application should read the command line and simply pass it as a
parameter to hcConnect. If the parameter is not passed (IszCmd points to an
empty string), the HAPI connects to the first HyperChem instance it finds.
This may cause problems when there are more than one active HyperChem
on the desktop.

If the flag errACTION_MESS_BOX is raised for error processing (see Auxil-
iary functions) the HAPI displays a message box if the function is not able to
establish a connection with HyperChem. The action then depends on the
user’s choice (Abort/Retry/Ignore).

When the user ignores the message, hcConnect returns FALSE. See Error
processing section for details.

Classification of HAPI Calls 239

The API functions

See Also

hcDisconnect, hcSetErrorAction, hcLastError

hcDisconnect

The function hcDisconnect closes the connection with HyperChem opened by
hcConnect.

API header

BOOL hcDisconnect (void) ;

FORTRAN interface

logical function hfDisconnect ()

VISUAL BASIC declaration

Declare Function hbDisconnect Lib "hapi.dll"™ Alias "hcDisconnect" () As Long

Parameters

The function takes no parameters

Return Value

The function returns TRUE if the disconnecting was successful.

Remarks

The function is called automatically when errors occurs and the user chooses
ABORT as an action. The application should always close the connection
before it exits, otherwise the number of open but not used DDE channels
would grow unnecessarily.

See Also

hcConnect

240 Appendix C

The API functions

hcEXxit

This function causes an immediate exit from the application that calls it.

API header
void hcExit (void) ;

FORTRAN interface
subroutine hfExit ()

VISUAL BASIC declaration

Declare Sub hbExit Lib "hapi.dll"™ Alias "hcExit" ()
Parameters

The function takes no parameters.

Remarks

The function should be treated as an emergency exit rather than a regular
method of exiting program operation.

Functions for Text-based Communication

hcExecTxt

This function executes a HyperChem command in a text format. The function
is also used for updating HSV values using a text format.

API header
BOOL hcExecTxt (LPSTR script cmd) ;
FORTRAN interface

logical function hfExecTxt (script cmd)
character* (*) script cmd

Classification of HAPI Calls 241

The API functions

VISUAL BASIC declaration

Declare Function hbExecTxt Lib "hapi.dll" Alias "hcExecTxt" (ByVal script cmd
As String) As Long

Parameters
C/C++:; The parameter is a NULL terminated string containing the command to be
executed.
FORTRAN: The parameter is Fortran string containing the command to be executed.
VB: The parameter is VB string containing the command to be executed

Return Value

The function returns TRUE (1) upon successful completion. If there is an
error, the user is notified by the appropriate message-box. If the error pro-
cessing level is setto errACTION_NO (see SetErrorAction), the user may call
hcLastError for info about the error.

Remarks

The update of an HSV variable is conceptually similar to the execution of a
command. Hence, to set the value of an HSV variable the user’s application
might use the following syntax:

result=hcExecTxt (“coordinates(1,2)=0.1,0.2,0.3")

for setting the coordinates of atom 1 in molecule 2 to (0.1,0.2,0.3).

Some commands may take time to complete. The regular time-out value for
command completion is set at about 65 seconds. The user may extend the
time-out by calling hcSetTimeouts.

See Also

hcQueryTxt, hcExecBin

hcQueryTxt

The function queries for a value of an HSV variable in text mode.

242 Appendix C

The API functions

API header

LPSTR hcQueryTxt (LPSTR hsv);

FORTRAN interface

logical function hfQueryTxt (hsv, res)
character* (*) hsv,res

VISUAL BASIC declaration

Declare Function hbQueryTxt Lib "hapi.dll" Alias "hcQueryTxt" (ByVal command
As String) As String

Parameters

C/C++: Null terminated string containing HSV to be queried. May contain indices in
the case of vector and array variables.

FORTRAN: ‘hsv’ is a Fortran string containing the HSV to be queried. ‘res’ is a Fortran
string where the output is placed.

VB: VB String containing HSV name to be queried.

Return Value

In the C, C++ or VB version , the function allocates the memory required to
hold the answer and returns a pointer or a NULL pointer if the answer is not
valid. However, the Fortran interface receives logical .true. or .false. indicat-
ing successful or unsuccessful completion of the function.

Remarks

When accessed from C/C++, the function returns a pointer to the newly allo-
cated memory. Hence, the calling application is responsible for deallocating
this particular memory block after it has been used, using the hcFree call.

The Fortran interface deallocates the memory block automatically. However,
it is the calling application’s responsibility to pass a reference to the Fortran
string (‘res’) of sufficient length. If the answer is longer than provided string,
the output is truncated.

When Querying for elements of vectors and arrays, the regular ‘parenthesis’
syntax is used. For example:

txt_xyz=hcQueryTxt(“coordinates(1,2)");

for querying the coordinates of atom 1 in molecule 2.

Classification of HAPI Calls 243

The API functions

See Also

hcQueryBin; see remarks for hcExecTxt for information about modifying
HSV values.

Functions for Binary Communication

Binary Execute and Query

hcExecBin

This function executes a binary representation of a script command.

API header

BOOL hcExecBin (HSV cmd, LPV args, DWORD args length);

FORTRAN interface

logical function hfExecBin(cmd, args,args length)
integer cmd,args,args_length
dimension args(args_length)

VISUAL BASIC declaration

Declare Function hbExecBin Lib "hapi.dll" Alias "hcExecBin" (ByVal cmd As Long,
ByRef args As IntBuff, ByVal args length As Long) As Long

Parameters

C/C++: ‘cmd’ specifies the HSV code. The calling application should include an
‘hsv.h’ file to have the codes available. ‘args’ is a pointer to memory block
containing possible arguments. ‘args_length’ is the total length of valid data
pointed to by ‘args’.

FORTRAN: The calling application should include an ‘hsv.fi’ file to have the relevant
HSV codes available. The difference in the Fortran interface is that ‘args’ is
the reference to integer array. When transfering arguments of different types,
the user has to use an equivalence instruction to pack the array with the
required data type.

VB: The ‘cmd’ and ‘args_length’ parameters have the same meaning as for C and

244 Appendix C

The API functions

Fortran. The ‘args’ parameter is of ‘IntBuff’ type. This user defined Visual
Basic type is defined in ‘hsv.bas’ module file.

Return Value

The function returns TRUE when successfully completed.

Remarks

The function may be used to update the values of an HSV variable, similar to
the update via the use of hcExecTxt. Data may need to be packed. However,
it is highly recommended that you use instead the functions from the Binary
Get/Set group, which perform all required packing internally.

Some commands may take time to complete. The regular time-out value for
command completion is set at about 65 seconds. The user may extend the
time-out by calling hcSetTimeouts

See Also

hcQueryBin, hcGetxxx and hcSetxxx functions

hcQueryBin

The function queries for the binary value of an HSV of any type.

API header

void* hcQueryBin (int hsv,int indxl,int indx2,int* resp length);

FORTRAN interface

logical function hfQueryBin (hsv, indxl,indx2, result, resp length)
integer hsv,indxl,indx2,resp length, result
dimension result (resp length)

VISUAL BASIC declaration

Declare Function hbQueryBin Lib "hapi.dll" Alias "hfQueryBin" (ByVal var As
Long, ByVal indxl As Long, ByVal indx2 As Long, ByRef result As IntBuff, ByRef
cbl As Long) As Long

Classification of HAPI Calls 245

The API functions

C/C++:

FORTRAN:

VB:

Parameters

‘hsv’ - the binary code for HSV to be queried. ‘indx1’, ‘indx2’ the indexes for
vector and array HSVs conforming the rules: indx1=0, indx2=0 - queries
scalar HSV, entire vector or entire array; indx1=n,indx2=0 - queries n-th
element of the vector HSV; indx1=m, indx2=n - get m,n-th element of the
array HSV. ‘resp_length’ is the pointer to an integer variable where the
length of the memory allocated by the function and returned as a pointer is
stored.

The arguments: ‘hsv’, ‘indx1’ and ‘indx2’ have identical meaning as in
C/C++ case. The fourth argument, ‘result’ is a reference to the integer array
that will receive the result of the query. The fifth argument, ‘resp_length’
should contain maximum number of bytes that ‘result’ array can receive.
Upon successful completition ‘resp_length’ will hold the number of bytes
received.

The “var’, ‘indxl’ and ‘indx2’ have the same meaning as for C/C++ and
Fortran. ‘result’ is a variable of the ‘IntBuff’ type defined in hsv.bas. See
remarks to hcExecBin for explanations. The fifth argument, ‘resp length’
should contain maximum number of bytes that ‘result’ array can receive.

Return Value

In the C/C++ case the function returns the pointer to the memory allocated
to hold the result of the query. A null value indicates failure during the query
operation. In the Fortran and VB interface the function returns 1 if it was
completed successfully and 0 otherwise.

Remarks

In the C/C++ case the function allocates a required memory block and
returns the resultant pointer. It is the calling application’s responsibility to
free the memory when it is no longer needed, by calling hcFree.

When querying for vector and array variable with indexes (indx1 and/or
indx2 set to zero) the result of the query contains all of the elements of respec-
tive variable. If it is an array, the atom indices change faster than the mole-
cule indices.

If, in the Fortran case, the size of ‘result’ is smaller than the size of the query
results, only the first ‘resp_length’ bytes are actually transferred to the
‘result’ array.

246

Appendix C

The API functions

See Also

hcExecBin, hcQueryTxt, hcGetxxx, hcSetxxx

Functions for Binary ‘Get’

This group of HAPI functions provide the easiest way for querying (Get) and
updating (Set) for HSV variables. The transfer is performed in binary mode,
hence, it is the fastest method for exchanging data. The functions provide all
the necessary low-level operations on the blocks of memory transferred
between a user application and HyperChem. This isolates the user applica-
tion from the tedious task of preparing and interpreting the binary messages
used by a lower-level communication between HyperChem and the user’s
application.

hcGetint

The function gets the value of a scalar HSV of integer type and returns that
value.

API| header

int hcGetInt (int hsv);

FORTRAN interface

integer function hfGetInt (hsv)

integer hsv

VISUAL BASIC declaration

Declare Function hbGetInt Lib "hapi.dll" Alias "hcGetInt" (ByVal hsv As Long)

As Long

C/C++:
FORTRAN:
VB:

Parameters

HSV code of the variable
HSV code of the variable
HSV code of the variable

Classification of HAPI Calls 247

The API functions

Return Value

The function returns the value of the HSV variable of integer type.

Remarks
See Also

hcSetint, Appendix A for the types of HSV variables
hcGetReal

The function gets the value of a scalar HSV of floating point (double
precision) type and returns this value.

API header

double hcGetReal (HSV wvar) ;

FORTRAN interface

double precision function hfGetReal (hsv)
integer hsv

VISUAL BASIC declaration

Declare Function hbGetReal Lib "hapi.dll" Alias "hcGetReal" (ByVal hsv As Long)
As Double

Parameters
C/C++: HSV code of the variable
FORTRAN: HSV code of the variable
VB: HSV code of the variable

Return Value

The function returns the double precision value of HSV variable.

Remarks

248 Appendix C

The API functions

See Also

hcSetReal

hcGetintVec

The function gets the contents of the HSV variable of integer vector type .

API header

int hcGetIntVec (HSV var, int* buff, int max length);

FORTRAN interface

integer function hfGetIntVec (hsv, result, res length)
integer hsv, result, res length
dimension result (res length)

VISUAL BASIC declaration

Declare Function hbGetIntVec Lib "hapi.dll" Alias "hcGetIntVec" (ByVal hsv As
Long, ByRef buff As IntBuff, ByVal max length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the vector is copied,

'max_length' - the size of 'buff’

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional

integer array to receive the vector, ‘res_length’ - the size of ‘result’ array.

VB: The ‘hsv’ and ‘max_length’ have the same meaning as in the C/C++ case.
‘buff’ is of IntBuff type defined in ‘hsv.bas’ module definition file.

Return Value

The function returns the number of integer words transfered to the buffer, if

the operation was completed successfuly, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff' - it assumes that the
appropriate memory block pointed out by 'buff' was allocated and is of
'max_length' size. If the amount of integer words in the HSV is larger than the

Classification of HAPI Calls 249

The API functions

buffer, only the first 'max_length' words are copied into buffer. the same
applies to the Fortran ‘result’ and ‘res_length’ variables.

See Also

hcSetintVec, hcGetintVecElm, hcGetintArray, hcSetintArray

hcGetintArr

The function gets the contents of the HSV variable of the integer array type.

API| header

int hcGetIntArr (HSV var, int* buff, int max length);

FORTRAN interface

integer function hfGetIntArr (hsv, result, res length)
integer hsv, result, res length
dimension result(res length)

VISUAL BASIC declaration

Declare Function hbGetIntArr Lib "hapi.dll" Alias "hcGetIntArr" (ByVal var As
Long, ByRef buff As IntBuff, ByVal max length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the array is copied,
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘result’ - one dimensional integer
array to receive the HSV array, ‘res_length’ - the size of the ‘result’ array.

VB: N/A

Return Value

The function returns the number of integer words transferred to the buffer, if
the operation was completed successfuly, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff - it assumes that the

250 Appendix C

The API functions

appropriate memory block pointed out by 'buff' was allocated and is of

'max_length’ size. If the amount of integer words in the HSV is larger than the
buffer, only first 'max_length' words are copied into buffer. The same applies
to the Fortran ‘result’ and ‘res_length’ variables.

See Also

hcGetIntArrEIm, hcSetintArr, hcSetIntArrElm

hcGetIntArrElm

The function gets the contents of the HSV variable of integer array type.

API| header

int hcGetIntArrElIm(HSV var, int atom index, int molecule index);

FORTRAN interface

integer function hfGetIntArrElm(hsv, atom index, mol index)
integer hsv, atom index, mol index

VISUAL BASIC declaration

Declare Function hbGetIntArrElm Lib "hapi.dll"™ Alias "hcGetIntArrEIm" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long) As Long

C/C++:

FORTRAN:

VB:

Parameters
'var' - the HSV code, 'atom_index' - index for the row of array,
‘molecule_index’ - index for the column of the array.

‘hsv’ - the HSV code for the array variabepm_index' - index for the row
of array, ‘mol_index’ - index for the column of the array.

N/A

Return Value

The function returns the integer value of the element of the array HSV
variable of type integer.

Classification of HAPI Calls 251

The API functions

Remarks

HSV arrays are always the arrays with atom-in-molecule and molecule index.
Both indices run from 1 to number of respective elements.

See Also

hcSetIntArrElm, hcGetint, hcGetIntArr, hcSetint, hcSetIntArr

hcGetRealVec

The function gets the contents of the HSV variable of the real (double
precision) vector type.

API| header

int hcGetRealVec (HSV var, double* buff,int max length);

FORTRAN interface

integer function hfGetRealVec (hsv, result, res length)
integer hsv, res length

double precision result

dimension result (res_ length)

VISUAL BASIC declaration

Declare Function hbGetRealVec Lib "hapi.dll" Alias "hcGetRealVec" (ByVal var
As Long, ByRef buff As DblBuff, ByVal max length As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the vector is copied,
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional double
precision array to receive the HSV vector, ‘res_length’ - the size of ‘result’
array.

VB: N/A

252 Appendix C

The API functions

Return Value

The function returns the number of double precision words transfered to the
buffer, if the operation was completed successfully, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff - it assumes that the
appropriate memory block pointed out by 'buff' was allocated and is of
'max_length' size. If the amount of double precision words in the HSV is
larger than the buffer, only first 'max_length' words are copied into buffer.
the same applies to Fortran ‘resul’ and ‘res_length’ variables.

See Also

hcGetRealVecEIm, hcSetRealVec, hcGetReal, hcSetReal, hcGetRealArrXYZ,
hcSetRealArrXYZ

hcGetRealArr

The function gets the contents of the HSV variable of the real (double
precision) array type.

API header

int hcGetRealArr (HSV var, double* buff,int max length);

FORTRAN interface

integer function hfGetRealVec (hsv, result, res length)
integer hsv, res_ length

double precision result

dimension result (res length)

VISUAL BASIC declaration

Declare Function hbGetRealArr Lib "hapi.dll" Alias "hcGetRealArr" (ByVal var
As Long, ByRef buff As DblBuff, ByVal max length As Long) As Long

Parameters

C/C++; 'var' - the HSV code, 'buff' pointer to the buffer where the array is copied,
'max_length' - the size of 'buff’

Classification of HAPI Calls 253

The API functions

FORTRAN:

VB:

‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional double
precision array to receive the HSV vector, ‘res_length’ - the size of ‘result’
array.

N/A

Return Value

The function returns the number of double precision words transfered to the
buffer, if the operation was completed successfuly, or 0 if it failed.

Remarks

The function does not allocate memory for 'buff - it assumes that the
appropriate memory block pointed out by 'buff was allocated and is of
'max_length' size. If the amount of double precision words in the HSV is
larger than the buffer, only first ‘'max_length' words are copied into buffer.

The same applies to Fortran ‘result’ and ‘res_length’ variables.

See Also

hcGetRealArrElm, hcSetRealArr, hcSetReal ArrElm, hcSetReal, hcGetReal

hcGetintVecElm

The function gets the integer value of an element of the vector-type HSV
variable.

API| header

int hcGetIntVecElm (HSV var,int index);

FORTRAN interface

integer function hfGetIntVecElm (hsv, index)

integer hsv, index

VISUAL BASIC declaration

Declare Function hbGetIntVecElm Lib "hapi.dll" Alias "hcGetIntVecElm" (ByVal
var As Long, ByVal index As Long) As Long

254 Appendix C

integer hsv,

var As Long,

C/C++:
FORTRAN:

VB:

index

The API functions

Parameters

'var' - the HSV code, 'index’ - points out the element to be retrieved.

‘hsv’ - the HSV code for the vector variable, ‘index’ - points out the element
to be retrieved.

N/A

Return Value

The function returns the integer value of the element of an HSV variable of
integer type.

Remarks

The first element of the vector is referred to as an element with index equal to
one.

See Also

hcGetlnt, hcSetlInt, hcSetintVecEIm, hcGetIntVecElm

hcGetRealVecEIm

The function gets the value of a double-precision element of a vector HSV
variable..

API| header

double hcGetRealVecElm (HSV var,int index);

FORTRAN interface

double precision function hfgetRealVecElm (hsv, index)

VISUAL BASIC declaration

Declare Function hbGetRealVecElm Lib "hapi.dll" Alias "hcGetRealVecEIm" (ByVal
ByVal index As Long) As Double

Classification of HAPI Calls 255

The API functions

Parameters
C/C++: 'var' - the HSV code, 'index’ - points out the element to be retrieved.
FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘index’ - points out the element.
VB: N/A

Return Value

The function returns the double precision value of the element of the HSV
vector of real type.

Remarks

The first element of the vector is refered to as an element with index equal to
one.

See Also

hcSetRealVecElm, hcGetReal, hcSetReal, hcGetRealVec, hcSetRealVec

hcGetRealArrEIm

The function gets an element of an array HSV of real (double precision type).

API| header

double hcGetRealArrElm(HSV var,int atom index, int molecule index);

FORTRAN interface

integer function hfgetRealArrElm(hsv, atom index, molecule index)
integer hsv, atom index, molecule index

VISUAL BASIC declaration

Declare Function hbGetRealArrElm Lib "hapi.dll" Alias "hcGetRealArrElm" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long) As Double

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of array,

256 Appendix C

The API functions

'molecule_index' - index for the column of the array

FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘atom_index’ - index for the row
of array, ‘molecule_index’ - index for the column of the array.
VB: N/A

Return Value

The function returns the double precision value of the element of the array
HSV variable of real type.

Remarks

HSV arrays are always arrays with atom-in-molecule and molecule index.
Both indices run from 1 to number of respective elements.

See Also

hcSetRealArrEIm, hcGetReal, hcGetRealArr, hcSetReal, hcSetRealArr

hcGetRealArrXYZ

The function gets the three reals (double precision) that form an element of
the array HSV variable. It's designed almost exclusively for getting Cartesian
coordinates of an atom.

API| header

int hcGetRealArrXYZ (HSV var,int atom index,int molecule index, double* x,
double* y, double* z);

FORTRAN interface

logical function hfGetrealArrXYZ (hsv, atom index, molecule index, x, y, 2z)
integer hsv, atom index, molecule index
double precision x, y, z

VISUAL BASIC declaration

Declare Function hbGetRealArrXYZ Lib "hapi.dll" Alias "hcGetRealArrXYZ" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long, ByRef x
As Double, ByRef y As Double, ByRef z As Double) As Long

Classification of HAPI Calls 257

The API functions

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of array,
'molecule_index' - index for the column of the array, 'x', 'y’ and 'z’ pointers to
double precision words where the results will be placed.

FORTRAN: ‘hsv’ - the HSV code, ‘atom_index’ - index for the row of the array,
‘molecule_index’ - index for the column of the array, ‘X', 'y’, and ‘z’ - double
precision variables that receive the results.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The coordinates of atoms are represented in HyperChem as an array indexed
bythe atom-in-molecule number and the molecule number. However the
element of the array is not a number but a triple of numbers representing

three cartesian components of the position of the atom in space. Both atom
and molecule indices run from 1 tothe respective number of elements.

See Also

hcSetRealArrXYZ, hcGetRealArr, hcSetRealArr

hcGetRealVecXYZ

The function gets the three components of the elements of a vector HSV
variable.

API| header

int hcGetRealVecXYZ (HSV var,int atom index,double* x, double* y, double* z);

FORTRAN interface

logical function hfGetRealVex\cXYZ (hsv, index, x, vy, 2)
integer hsv, index
double precision x, y, z

258 Appendix C

The API functions

VISUAL BASIC declaration

Declare Function hbGetRealVecXYZ Lib "hapi.dll" Alias "hcGetRealVecXYZ" (ByVal
var As Long, ByVal index As Long, ByRef x As Double, ByRef y As Double, ByRef
z As Double) As Long

Parameters

C/C++: 'var' - the HSV code, 'index’ - index for the element of the vector, X', 'y' and
'z' pointers to double precision words where the results will be placed.

FORTRAN: ‘hsv’ - the HSV code, ‘index’ - index of the vector element, ‘x’, 'y’, and ‘2’ -
double precision values that receive the results.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks
Some properties in HyperChem are represented as a vector of triples usually

representing three cartesian components of the property. The index runs from
1 to the respective number of elements.

See Also

hcSetRealVecXYZ, hcGetReal, hcSetReal, hcGetRealVec, hcSetRealVec

hcGetStr

This function retrives the contents of the HSV variable of string type.

API| header

int hcGetStr (HSV var,char* buff,int max length);

FORTRAN interface

integer function hfGetStr(hsv, result, res length)
cahracter* (*) result

Classification of HAPI Calls 259

The API functions

VISUAL BASIC declaration

Declare Function hbGetStr Lib "hapi.dll" Alias "hcGetStr" (ByVal var As Long,
ByVal buff As String, ByVal max length) As Long

C/C++:

FORTRAN:

VB:

Parameters

'var' - the HSV code, 'buff' pointer to the buffer where the string is copied,
'max_length' - the size of 'buff'

‘hsv’ - the HSV code, ‘result’ - character array where the string is copied,
‘res_length’ - the length of the ‘result’ string.

N/A

Return Value

The function returns the number of charactesr copied into the buffer if the
operation was sucessful or zero otherwise.

Remarks

The function does not allocate memory for 'buff - it assumes that the
appropriate memory block pointed out by 'buff' was allocated and is of
'max_length' size. If the number of characters in the HSV is larger than the
buffer, only first 'max_length' bytes are copied into buffer.

See Also

hcSetStr, hcSetBlock, hcGetBlock

hcGetStrVecEIm

The function retrives the contents of the element of the vector HSV variable
of string type.

API| header

int hcGetStrVecElm(HSV var, int index, char* buff, int max length);

FORTRAN interface

integer function hfGetStrVecElIm(hsv, index, result, res length)

integer hsv, index,

res length

260 Appendix C

character* (*) result

The API functions

VISUAL BASIC declaration

Declare Function hbGetStrVecElm Lib "hapi.dll" Alias "hcGetStrVecElm" (ByVal
var As Long, ByVal index As Long, ByVal buff As String, ByVal max length As

Long) As Long

C/C++:

FORTRAN:

VB:

Parameters
'var' - the HSV code, 'index' - points out the element to be retrieved, 'buff'
pointer to the buffer where the string is copied, 'max_length' - the size of 'buff'

‘hsv’ - the HSV code, ‘index’ - pointsout the element to be retreived, ‘result’
- character array where the string is copied, ‘res_length’ - the length of' result’
array.

N/A

Return Value

The function returns the number of characters copied into the buffer if the
operation was sucessful or zero otherwise.

Remarks

The function does not allocate memory for 'buff' - it assumes that the
appropriate memory block pointed out by 'buff' was allocated and is of
'max_length' size. If the number of characters in the HSV is larger than the
buffer, only first 'max_length' bytes are copied into buffer.

The first element of the vector has index equal to one.

See Also

hcSetStrVecElm, hcGetStr, hcSetStr

hcGetStrArrEIm

The function retrives the contents of the element of the array HSV variable of
string type.

Classification of HAPI Calls 261

The API functions

API header
int hcGetStrArrElm(HSV var, int atom index, int molecule index, char* buff,
int max length);

FORTRAN interface
integer function hfGetStrArrElm(hsv,atom index,mol index,result,res length)

integer hsv, atom index, mol index, res length
character* (*) result

VISUAL BASIC declaration

Declare Function hbGetStrArrElm Lib "hapi.dll" Alias "hcGetStrArrElm" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long, ByVal buff
As String, ByVal max length As Long) As Long

Parameters

CIC++:; ‘'var' - the HSV code, ‘atom_index' - index for the row of array,
'molecule_index' - index for the column of the array, 'buff' pointer to the

buffer where the string is copied, 'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code, ‘atom_index’ - index for the row of array, ‘mol_index’
- index for the column of array, ‘result’ - character array where the string is

copied, ‘res_length’ - the length of'result’ array.

VB: N/A

Return Value

The function returns the number of characters copied into buffer if the

operation was sucessful or zero otherwise.

Remarks

The function does not allocate memory for 'buff' - it assumes that the
appropriate memory block pointed out by 'buff' was allocated and is of
'max_length' size. If the number of characters in the HSV is larger than the

buffer, only first 'max_length' bytes are copied into buffer.

Both indices start with one.

See Also

hcSetStrArrElm, hcSetStr, hcGetStr

262 Appendix C

The API functions

hcGetBlock

The function retrives the contents of the whole HSV variable irrespetiv of its
type.

API| header

int hcGetBlock (HSV var, char* buff, int max length);

FORTRAN interface

integer function hfgetBlock(hsv, result, res length)
integer*1l result

VISUAL BASIC declaration

Declare Function hbGetBlock Lib "hapi.dll"™ Alias "hcGetBlock" (ByVal var As
Long, ByVal buff As String, ByVal max length) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the data is copied,
'max_length' - the size of 'buff'

FORTRAN: ‘hsv’ - the HSV code, ‘result’ - the integer*1 (byte) array where the data is
copied, ‘res_length’ - the size of the result.

VB: N/A

Return Value

The function returns the number of bytes copied into the buffer.

Remarks

Some HSV variables, particularly some vectors and arrays, have the type of
element which is not just an integer, real or string. The hcGetBlock was
provided to get access to that kind of variable. However, the user's
application is responsible for the interpretation of the data in the block and
the proper "sorting-out" of individual elements of the block.

See Also

hcSetBlock, hcQueryBin

Classification of HAPI Calls 263

The API functions

Functions for Binary ‘Set’

hcSetint

The function updates the scalar HSV of integer type.

API| header

int hcSetInt (int var, int value);

FORTRAN interface

logical function hfSetInt(hsv, value)
integer hsv, wvalue

VISUAL BASIC declaration

Declare Function hbSetInt Lib "hapi.dll" Alias "hcSetInt" (ByVal hsv As Long,
ByVal value As Long) As Long

Parameters

C/C++: ‘var’ - HSV code of the variable to be modified, ‘value’ - new value for the
variable.

FORTRAN: ‘hsv’ - HSV code of the variable to be modified, ‘value’ - new value for the
variable.

VB: ‘var’ - HSV code of the variable to be modified, ‘value’ - new value for the
variable.

Return Value

The function returns 1 if the update was successful or 0 if it failed.

Remarks
See Also

hcGetlint, Appendix A for the types of HSV variables

264 Appendix C

The API functions

hcSetReal

The function updates the scalar HSV of floating point (double precision)
type.

API| header

int hcSetReal (int var,double value);

FORTRAN interface

logical function hfSetReal (hsv, wvalue)

integer hsv

double precision value

VISUAL BASIC declaration

Declare Function hbSetReal Lib "hapi.dll" Alias "hcSetReal" (ByVal hsv As Long,
ByVal value As Double) As Long

C/C++:

FORTRAN:

VB:

Parameters

‘var’ - HSV code of the variable to be modified, ‘value’ - new value for the
variable.

‘hsv’ - HSV code of the variable to be modified, ‘value’ - new value for the
variable.

‘var’ - HSV code of the variable to be modified, ‘value’ - new value for the
variable.

Return Value

The function returns 1 if the update was successful or 0 if it failed.

Remarks

See Also

hcGetReal

Classification of HAPI Calls 265

The API functions

hcSetintVec

The function updates the vector HSV variable of the integer element type.

API header

int hcSetIntVec (HSV var, int* buff, int length);

FORTRAN interface

logical function hfSetIntVec(hsv, result, res length)

integer hsv,

result,

res_ length

dimension result (res_ length)

VISUAL BASIC declaration

Declare Function hbSetIntVec Lib "hapi.dll" Alias "hcSetIntVec" (ByVal hsv As

Long, ByRef buff As IntBuff, ByVal max length As Long) As Long
Parameters

C/C++: ‘var' - the HSV code, 'buff' pointer to the buffer with the new contens for the
vector, 'length’ - the number of elements in the 'buff' buffer.

FORTRAN: ‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional
integer array containing data for the vector, ‘res_length’ - the size of ‘result’
array.

VB: N/A
Return Value
The function returns 1 if the variable was updated successfully, or 0 if it was
not updated.

Remarks
The user’s application is responsible for the appropriate number of elements
in the buffer. If the number was incorrect, HyperChem would signal an error.
See Also
hcGetIntVec, hcSetintVecElm, hcSetintArray, hcGetintArray,
hcSetintVecElm

266 Appendix C

The API functions

hcSetintArr

The function updates the array HSV variable of the integer element type.

API header

int hcSetIntArr (int var, int* buff, int length);

FORTRAN interface

logical function hfSetIntArr(hsv, result, res length)
integer hsv, result, res length
dimension result (res_ length)

VISUAL BASIC declaration

Declare Function hbSetIntArr Lib "hapi.dll" Alias "hcSetIntArr" (ByVal var As
Long, ByRef buff As IntBuff, ByVal max length As Long) As Long

Parameters

CIC++:; ‘'var' - the HSV code, 'buff' pointer to the buffer with the new contens for the

array, 'length’ - the number of elements in the 'buff' buffer.

FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘result’ - one dimensional integer

array containing data for the array, ‘res_length’ - the size of ‘result’ array.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or O if it was

not updated.

Remarks

The user’s application is responsible for the appropriate number of elements
in the buffer. If the number was incorrect, HyperChem would signal an error.

See Also

hcSetIntArrElm, hcGetintArr, hcGetIntArrElm

Classification of HAPI Calls 267

The API functions

hcSetintArrEIm

The function updates the element of the array HSV variable of the integer
array type.

API| header

int hcSetIntArrElm(HSV var, int atom index, int molecule index, int value);

FORTRAN interface

logical function hfSetIntArrElm(hsv, atom index, mol index, value)
integer hsv, atom index, mol index, value

VISUAL BASIC declaration

Declare Function hbSetIntArrElm Lib "hapi.dll" Alias "hcSetIntArrElm" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long, ByVal
value As Double) As Long

Parameters

C/C++: ‘'var' - the HSV code, 'atom_index' - index for the row of array,
‘molecule_index’ - index for the column of the array, ‘value’ - the new value
for the variable.

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of array,
‘molecule_index’ - index for the column of the array, ‘value’ - the new integer
value for the variable.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or O if it was
not updated.

Remarks

HSV arrays are always the arrays with atom-in-molecule and molecule index.
Both indices run from 1 to number of respective elements.

See Also

hcGetIntArrElm, hcSetlint, hcSetintArr, hcGetint, hcGetIntArr

268 Appendix C

The API functions

hcSetRealVec

The function updates the contents of the HSV variable of the real (double
precision) type.

API| header

int hcSetRealVec (int var, double* buff,int length);

FORTRAN interface

logical function hfSetRealVec(hsv, result, res length)
integer hsv, res length

double precision result

dimension result (res_ length)

VISUAL BASIC declaration

Declare Function hbSetRealVec Lib "hapi.dll" Alias "hcSetRealVec" (ByVal var
As Long, ByRef buff As DblBuff, ByVal max length As Long) As Long

C/C++:

FORTRAN:

VB:

Parameters

‘'var' - the HSV code, 'buff' pointer to the buffer with the new contens for the
vector, ‘'length’ - the number of elements (double precission words) in the
'buff' buffer.

‘hsv’ - the HSV code for the vector variable, ‘result’ - one dimensional double
precision array containing the data for the vector, ‘res_length’ - the size of the
‘result’ array.

N/A

Return Value

The function returns 1 if the variable was updated successfully, or O if it was
not updated.

Remarks

The user’s application is responsible for the appropriate number of elements
in the buffer. If the number was incorrect, HyperChem would signal an error.

Classification of HAPI Calls 269

The API functions

See Also

hcSetRealVecElm, hcGetRealVec, hcSetReal, hcGetReal, hcSetRealArrXYZ,
hcGetRealArrXYZ

hcSetRealArr

The function updates the HSV variable of the real (double precision) type.

API header

hcSetRealArr (int var, double* buff,int length);

FORTRAN interface

logical function hfSetRealArr(hsv, result, res length)
integer hsv, res length

double precision result

dimension result (res_ length)

VISUAL BASIC declaration

Declare Function hbSetRealArr Lib "hapi.dll" Alias "hcSetRealArr" (ByVal var

As Long, ByRef buff As DblBuff, ByVal max length As Long) As Long
Parameters
CIC++: 'var' - the HSV code, 'buff' pointer to the buffer with the new contens for the
array, 'length’ - the number of elements (double precission words) in the "buff’
buffer.
FORTRAN: ‘hsv’ - the HSV code for the array variable, ‘result’ - one dimensional double
precision array containing the data for the array, ‘res_length’ - the size of the
‘result’ array.
VB: N/A
Return Value
The function returns 1 if the variable was updated successfully, or O if it was
not updated.
270 Appendix C

The API functions

Remarks

The user’s application is responsible forthe appropriate number of elements
in the buffer. If the number was incorrect, HyperChem would signal an error.

See Also

hcSetRealArrEIm, hcGetRealArr, hcGetReal ArrEIm, hcGetReal, hcSetReal

hcSetintVecElm

The function updates the element of the vector HSV variable of integer type.

API| header

int hcSetIntVecElm(int var, int index, int value);

FORTRAN interface

logical function hfSetIntVecElm(hsv, index, value)
integer hsv, index, value

VISUAL BASIC declaration

Declare Function hbSetIntVecElm Lib "hapi.dll"™ Alias "hcSetIntVecElm" (ByVal
var As Long, ByVal index As Long, ByVal value As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'index’ - points out the element to be updated, ‘value’ -
new value for the element.

FORTRAN: 'hsv' - the HSV code fo rthe vector variable, 'index' - points out the element to
be updated, ‘value’ - new value for the element.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or O if it was
not updated.

Classification of HAPI Calls 271

The API functions

Remarks

The first element of the vector has an index equal to one.

See Also

hcSetlnt, hcGetlnt, hcGetIntVecElm, hcSetintVecElm

hcSetRealVecEIm

The function updates the element of the vector HSV variable of double-
precission type.

API| header

int hcSetRealVecElm(int var,int index,double value);

FORTRAN interface

logical function hfSetRealVecElm(hsv, index, value)
integer hsv, index
double precision wvalue

VISUAL BASIC declaration

Declare Function hbSetRealVecElm Lib "hapi.dll" Alias "hcSetRealVecElIm" (ByVal
var As Long, ByVal index As Long, ByVal value As Long) As Long

Parameters

C/C++: 'var' - the HSV code, 'index' - points out the element to be updated, ‘value’ -
new value for the element.

FORTRAN: 'hsv' - the HSV code for the vector variable, 'index' - points out the element to
be updated, ‘value’ - new double precision value for the element.

VB: N/A

Return Value

The function returns 1 if the variable was updated successfully, or 0 if it was

272 Appendix C

The API functions

not updated.

Remarks

The first element of the vector has index equal to one.

See Also

hcGetRealVecEIm, hcSetReal, hcGetReal, hcSetRealVec, hcGetRealVec

hcSetRealArrEIm

The function updates the element of the array HSV variable of real (double
precission type).

API header

int hcSetRealArrElm(int var,int atom index,int molecule index,double value);

FORTRAN interface

logical function hfSetRealVecElm(hsv, atom index, mol index, value)
integer hsv, atom index, mol index
double precision value

VISUAL BASIC declaration

Declare Function hbSetRealArrElm Lib "hapi.dll" Alias "hcSetRealArrElm" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long, ByVal
value As Double) As Double

Parameters

C/C++; 'var' - the HSV code, 'atom_index' - index for the row of array,
'molecule_index' - index for the column of the array, value - the new value for
the variable

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of array, 'mol_index' -
index for the column of the array, value - the new value for the variable

VB: N/A

Classification of HAPI Calls 273

The API functions

Return Value

The function returns 1 if the variable was updated successfully, or O if it was
not updated.

Remarks

HSV arrays are always arrays with an ‘atom-in-molecule’ and a‘molecule’
index. Both indices run from 1 to the number of respective elements.

See Also

hcGetRealArrElm, hcSetReal, hcSetRealArr, hcGetReal, hcGetRealArr

hcSetRealArrXYZ

The function updates an element of array HSV variable that has three real
numbers as the element type. It's designed almost exclusively for updating the
cartesian coordinates for an atom

API header

int hcSetRealArrXYZz) (int var,int atom index,int molecule index,double x,
double y, double z);

FORTRAN interface

logical function hfSetRealArrXYX(hsv, atom index, mol index, X, y, z)
integer hsv, atom index, mol index
double precision x, y, z

VISUAL BASIC declaration

Declare Function hbSetRealArrXYZ Lib "hapi.dll"™ Alias "hcSetRealArrXYzZ" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long, ByVal x
As Double, ByVal y As Double, ByVal z As Double) As Long

Parameters

C/C++: 'var' - the HSV code, 'atom_index' - index for the row of array,
'molecule_index' - index for the column of the array, 'x', 'y and 'z' are double
precision new values for the element.

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of array, 'mol_index'’ -

274 Appendix C

The API functions

index for the column of the array, 'x', 'y’ and 'z' are double precision new
values for the element.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The coordinates of atoms are represented in HyperChem as an array indexed
by the atom-in-molecule number and the molecule number. However the
element of the array is not a number but a triple of numbers representing
three Cartesian components of the position of the atom in space. Both atom
and molecule indices run from 1 to the respective number of elements.

See Also

hcGetRealArrXYZ, hcSetRealArr, hcGetRealArr

hcSetRealVecXYZ

The function updates an element of vector HSV variable that has three real
numbers as the element type.

API| header

int hcSetRealVecXYZ (int var,int index,double x, double y, double z);

FORTRAN interface

logical function hfSetRealVecXYX(hsv, index, x, vy, z)
integer hsv, index
double precision x, y, z

VISUAL BASIC declaration

Declare Function hbSetRealVecXYZ Lib "hapi.dll" Alias "hcSetRealVecXYZ" (ByVal
var As Long, ByVal index As Long, ByVal x As Double, ByVal y As Double, ByVal
z As Double) As Long

Classification of HAPI Calls 275

The API functions

C/C++:

FORTRAN:

VB:

Parameters

'var' - the HSV code, 'index’ - index for the element of the vector, X', 'y' and
'z' double precision new values for the element.

'hsv’ - the HSV code, 'index' - index for the element of the vector, X', 'y and
'z' double precision new values for the element.

N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks
Some properties in HyperChem are represented as the vector of triples,

usually representing three Cartesian components of the property. The index
runs from 1 to the respective number of elements.

See Also

hcGetRealVecXYZ, hcSetReal, hcGetReal, hcSetRealVec, hcGetRealVec

hcSetStr

The function updates the content of the HSV variable of string type.

API header

int hcSetStr (int var,char* string);

FORTRAN interface

logical function hfSetStr(hsv, buff)

integer hsv

character* (*) buff

VISUAL BASIC declaration

Declare Function hbSetStr Lib "hapi.dll" Alias "hcSetStr" (ByVal var As Long,
ByVal buff As String) As Long

276 Appendix C

C/C++:

FORTRAN:

VB:

The API functions

Parameters

'var' - the HSV code, 'string’ pointer to the NULL-terminated string

containing a new string.

'hsv' - the HSV code, 'buff' - Fortran character array containing the new value
of the string.

N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks
See Also

hcGetStr, hcGetBlock, hcSetBlock

hcSetStrVecEIm

The function updates the content of the element of the vector HSV variable of
string type.

API header

int hcSetStrVecElm(int var, int index, char* string);

FORTRAN interface

logical function hfSetStrVecElm(hsv, index, buff)
integer hsv,

character* (*)

index
buff

VISUAL BASIC declaration

Declare Function hbSetStrVecElm Lib "hapi.dll"™ Alias "hcSetStrVecElm" (ByVal
var As Long,
ByVal buff As String) As Long

Long,

C/C++:

ByVal index As Long, ByVal buff As String, ByVal max length As

Parameters

'var' - the HSV code, 'index' - points out the element of the variable to be

Classification of HAPI Calls 277

The API functions

updated, 'string' pointer to the NULL-terminated string containing a new

string.

FORTRAN: 'hsv' - the HSV code, 'index’ - points out the element of the variable to be
updated, 'buff' - character array containing the Fortran string.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The first element of the vector has index equal to one.

See Also

hcGetStrVecElm, hcSetStr, hcGetStr

hcSetStrArrEIm

The function updates the element of the array HSV variable of string type.

API| header

int hcSetStrArrElm(int var,int atom index, int molecule index, char* string);

FORTRAN interface

logical function hfSetStrArrElm(hsv, atom index, mol index, buff)
integer hsv, atom index, mol index
character* (*) buff

VISUAL BASIC declaration

Declare Function hbSetStrArrElm Lib "hapi.dll" Alias "hcSetStrArrElm" (ByVal
var As Long, ByVal atom index As Long, ByVal molecule index As Long, ByVal buff
As String, ByVal max length As Long, ByVal buff As String) As Long

Parameters

C/C++:; ‘'var' - the HSV code, ‘atom_index' - index for the row of array,
'molecule_index' - index for the column of the array, 'string' pointer to the

278 Appendix C

The API functions

new, NULL-terminated string.

FORTRAN: 'hsv' - the HSV code, 'atom_index' - index for the row of array, 'mol_index' -
index for the column of the array, 'buff' - character array containing Fortran
string.

VB: N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

The both atom and molecule indices start with one.

See Also

hcGetStrArrElm, hcGetStr, hcSetStr

hcSetBlock

The function updates the contents of the whole HSV variable irrespevtively of
its type.

API| header

int hcSetBlock (int var, char* buff, int length);

FORTRAN interface

logical function hfSetBlock(hsv, buff, res length)
integer*1l buff

VISUAL BASIC declaration

Declare Function hbSetBlock Lib "hapi.dll" Alias "hcSetBlock" (ByVal var As
Long, ByVal buff As String, ByVal max length) As Long

Parameters

C/C++: 'var' - the HSV code, 'buff' pointer to the buffer where the data is copied,
'length’ - the size of 'buff' (in bytes)

FORTRAN: 'hsv' - the HSV code, 'buff' - integer*l (byte) array containing the data,

Classification of HAPI Calls 279

The API functions

VB:

‘res_length' - the size of 'buff' (in bytes)
N/A

Return Value

The function returns 1 if the operation was successful and 0 otherwise.

Remarks

Some HSV variables, particularly, some vectors and arrays have the type of
element which is not scalar. The hcGetBlock was provided to get access to
that kind of variable. However, the user's application is responsible for the
interpretation of the data in the block and proper setting all of the individual
elements of the block.

See Also

hcGetBlock, hcQueryBin

Functions for Processing Notifications

hcNotifyStart

The function requests for notifications about any change of the HSV variable.

API| header

int hcNotifyStart (LPSTR var name) ;

FORTRAN interface

logical function hfNotifyStart (hsv_name)

character* (*)

hsv_name

VISUAL BASIC declaration

Declare Function hbNotifyStart Lib "hapi.dll"™ Alias "hcNotifyStart" (ByVal
var name As String) As Long

280 Appendix C

character* (*)

C/C++:
FORTRAN:
VB:

C/C++:

The API functions

Parameters

‘var_name’ - HSV name (text) for which notification is requested.
‘hsv_name- HSV name (text) for which notification is requested.
N/A

Return Value

The function returns 1 if the notification request is accepted.

Remarks

The function simply request for notification. H how the notification will be
processed is specified by the hcNotifySetup function.

See Also

hcNotifyStop, hcNotifySetup

hcNotifyStop

The function cancels the request for notifications about the change of the HSV
variable.

API| header

int hcNotifyStop (LPSTR var name);

FORTRAN interface

logical function hfNotifyStop(hsv name)
hsv_name

VISUAL BASIC declaration

Declare Function hbNotifyStop Lib "hapi.dll" Alias "hcNotifyStop" (ByVal
var name As String) As Long

Parameters

‘var_name’ - HSV name (text) for which notification request is cancelled.

Classification of HAPI Calls 281

The API functions

FORTRAN:
VB:

‘hsv_name’ - HSV name (text) for which notification request is cancelled
N/A

Return Value

The function returns 1 if the notification request was canceled.

Remarks

The function stops the notification irrespective of the method for notification
processing.

See Also

hcNotifyStart, hcNotifySetup

hcNotifySetup

The function establishes how the notifications have to be processed.

API header

int hcNotifySetup (PFNB pCallBack,int NotifyWithText) ;

FORTRAN interface

logical function hfNotifySetup (FnCallback, TextAdviseFlag)
logical TextAdviseFlag

VISUAL BASIC declaration

Declare Function hbNotifySetup Lib "hapi.dll"™ Alias "hcNotifySetup" (ByVal clb

As Long, ByVal NotifyWithText As Long) As Long
Parameters
C/C++: ‘pCallBack’ - pointer to the callback function designed to process
notifications. However, the user may provide NULL parameter for pCallBack
and in this case the Notification Agent will be used. The last parameter
‘NotifyWithText' orders text notifications if is 1 and binary if it is 0.
282 Appendix C

FORTRAN:

VB:

typedef VOID

typedef VOID

The API functions

‘FnCallBack’ - pointer to the callback function designed to process
notifications. However, the user may provide 0 as a parameter for
FnCallBack and in this case the Notification Agent will be used. The last
parameter ‘TextAdviseFlag’ orders text notifications if is 1 and binary if it is
0.

N/A

Return Value

The function returns 1 if the notification request was cancelled.

Remarks

The user application may define its own function to process notification in
one of the forms:

(*PFNB) (int wvar, char* data, int length);
for the binary natifications, or:

(*PFNX) (char* name, char* data);
for the text notifications.

In both cases the notification agent will not be used and the application is
responsible for processing, storing or buffering the incoming data through the
callback function. This is the best method for processing notifications.

However, as it was noted in Chapter 11, many types of applications cannot
receive or properly process notifications. This include all console based
applications, FORTRAN programs, external Tcl/Tk programs etc. Providing
NULL as the callback address parameter automatically starts the Notification
Agent (0 in Fortran).

See Also

hcNotifyStart, hcNotifyStop

hcNotifyDataAvail

The functions checks if the Notification Agent has any not-processed
notifications in its buffers.

Classification of HAPI Calls 283

The API functions

API| header

int hcNotifyDataAvail (void) ;

FORTRAN interface

integer function hfNotifyDataAvail ()

VISUAL BASIC declaration

Declare Function hbNotifyDataAvail Lib "hapi.dll" Alias "hcNotifyDataAvail"
(ByVal var name As String) As Long

Parameters

The function has no parameters

Return Value

The function returns 1 if there is any unprocessed notification or O otherwise.
Remarks
The application may call the function as often as required; a call to the

function deschedules the time slicing of the Windows operating system, so the
application does not consume much processing time.

See Also

hcNotifyStart, hcNotifySetup

hcGetNotifyData

The functions gets data arriving from a notification previously checked.

API header

int hcGetNotifyData (char* name,char *buffer, DWORD MaxBufflLength) ;

284 Appendix C

The API functions

FORTRAN interface

integer function hfGetNotifyData(name. result, res length)
integer res_length
character* (*) name, result

VISUAL BASIC declaration

Declare Function hbGetNotifyData Lib "hapi.dll" Alias "hcGetNotifyData" (ByVal
name As String, ByVal buffer As String, ByVal MaxBufflLength As Long) As Long

Parameters

C/C++: ‘name’- is the address of the buffer where the name of the variable is placed.
‘buffer’ - is the address of the buffer where incoming data will be copied,
‘MaxBufferLength’ is the maximum size of the data block that ‘buffer’ can

accept.

FORTRAN: ‘name’- is the character array where the name of the variable is placed.
‘result’ - is the character array where incoming data will be copied,
‘res_length’ is the maximum size of the data block that ‘result’ can accept (in
bytes).

VB: N/A

Return Value

The function returns the number of bytes copied by the function to the buffer
‘buffer’.

Remarks

Each call to hcGetNotifyData copies the notification message to the provided
buffers and discards that message, deleting the appropriate buffers in the
Notification Agent area. This means that the user’s application listening for

notifications must properly process all discarded (and copied) messages.

See Also

hcNotifyStart, hcNotifySetup, hcNotifyDataAvail

Classification of HAPI Calls 285

The API functions

Functions For Memory Allocation

hcAlloc

The function allocates a memory block.

API header

void* hcAlloc(size t n bytes);

FORTRAN interface

This function is unavailable for Fortran programs

VISUAL BASIC declaration

This function is unavailable for Visual Basic programs

Parameters
C/C++: ‘n_bytes’ number of bytes to allocate.
FORTRAN: N/A
VB: N/A

Return Value

The function returns a pointer to the allocated block, or NULL if the
allocation was not successful.

Remarks

The ‘hcAlloc’ allocates memory for both internal HAPI needs and possible
user requirements. However, the user may use regular C/C++ allocation
routines.

See Also

hcFree

286 Appendix C

The API functions

hcFree

The function deallocates a block of memory previously allocated by a call to
hcAlloc.

API header

void hcFree (void* pointer);

FORTRAN interface

This function is unavailable for Fortran programs

VISUAL BASIC declaration

This function is unavailable for Visual Basic programs

Parameters
CIC++:; ‘pointer’ is the pointer obtained by a previous call to hcAlloc.
FORTRAN: N/A
VB: N/A

Return Value

The function does not return any data.

Remarks

The main use for hcFree is after processing the data returned by hcQueryTxt
and hcQueryBin. See description for these functions.

See Also

hcAlloc, hcQueryBin, hcQueryTxt

Classification of HAPI Calls 287

The API functions

Auxiliary Functions

hcShowMessage

The function displays message box with provided string.

API header

void hcShowMessage (LPSTR message) ;

FORTRAN interface

subroutine hfShowMessage (str)
character* (*) str

VISUAL BASIC declaration

This function is useless for Visual Basic programs

Parameters

C/C++: ‘message’ points to NULL terminated string containing message to be
displayed.

FORTRAN: ‘str’ - Fortran string containing the message to display.

VB: N/A

Return Value

The function does not return any data.

Remarks

The function may be useful for debuging programs that cannot easily display
regular Windows messages (like most console-based programs).

See Also

288 Appendix C

The API functions

hcSetTimeouts

The function sets new timeout values for execution, querying and other types
of communication.

API header

void hcSetTimeouts (int ExcTimeOut, int QryTimeOut, int RstTimeOut) ;

FORTRAN interface

subroutine hfSetTimeouts(t_exc, t gry, t other)
integer t exc, t gry, t other

VISUAL BASIC declaration

Declare Function hbSetTimeouts Lib "hapi.dll" Alias "hcSetTimeouts" (ByVal
ExcTimeOut As Long, ByVal QryTimeOut As Long, ByVal RstTimeOut As Long) As Long

Parameters

C/C++: ‘ExcTimeOut’ is the new time-out value (in miliseconds) for the execution of
commands sent to HyperChem, ‘QryTimeOut’ is the new time-out value (in
miliseconds) for the processing requests for HSV variables ,'RstTimeOut’ is
the new time-out value for processing controling commands, like notification
requests etc.

FORTRAN: ‘t-exc is the new time-out value (in milliseconds) for the execution of
commands sent to HyperChem, ‘t_qry’ is the new time-out value (in
milliseconds) for processing requests for HSV variables ,'t_other’ is the new
time-out value for process controlling commands, like notification requests,
etc.

VB: N/A

Return Value

The function does not return any data.

Remarks

The default value for all time-outs is about 65 seconds (OXFFFO.) After this
time expires and any command, query or other operation has not finished, the
error condition is invoked. The user may increase the time-out value for any

Classification of HAPI Calls 289

The API functions

of these three types. The most common situation where the time expires is
associated with execution of commands controlled by "ExcTimeOut’ and
t exc'.

See Also

hcLastError

This function retrieves code and messages associated with the last error
associated with an HAPI operation.

API header

int hcLastError (char* LastErr);

FORTRAN interface

integer function hflastError(error)

character* (*)

error

VISUAL BASIC declaration

Declare Function hblastError Lib "hapi.dll" Alias "hcLastError" (ByVal
last error As String) As Long

C/C++:

FORTRAN:

VB:

Parameters

The ‘LastErr’ pointer to string that will receive the text message associated

with the last error. The string should be of ‘hcMaxMessSize’, with
‘hcMaxMessSize’ defined in ‘he.h’

‘error’ is the Fortran string that receives the last error message.
N/A

Return Value

The function returns a value indicating how severe the error was. There are
three possibilities:
errNO_ERROR - last operation was completed successfully

errNON_FATAL - last operation has not completed successfully, but the

290

Appendix C

The API functions

program can continue.

errFATAL - last operation caused a severe error and the application cannot
continue.

The flags errNO_ERROR, errNON_FATAL and errFATAL are defined in
‘he.h'.

Remarks

The hcLastError function is most useful when the user setsthe error action
flag to errACTION_NO using hcSetErrorAction. In this case the error does
not invoke messages on the screen asking for user intervention.

See Also

hcSetErrorAction, hcGetErrorAction

hcGetErrorAction

This function retrives the flag informing you how HAPI processes errors.

API header

int hcGetErrorAction (void) ;

FORTRAN interface

integer function hfGetErrorAction ()

VISUAL BASIC declaration

Declare Function hbGetErrorAction Lib "hapi.dll" Alias "hcGetErrorAction" ()

As Long

C/C++:

FORTRAN:

VB:

Parameters

The function takes no parameters.

Classification of HAPI Calls 291

The API functions

Return Value

The function returns the flag that may be a sum of the following flags defined
in ‘hc.h”;

errACTION_NO - do not perform any action on any error

errACTION_MESS_BOX - display message box with error message
errACTION_DISCONNECT - disconnect the application from HyperChem
errACTION_EXIT- immediately exit from application

errDDE_REP - report low level DDE error messages

errDDE_NO_REP - do not report low level DDE error messages

Remarks

The function should be called before the user changes the error processing
method by a call to hcSetErrorAction, and its value stored for later use in
restoring the original error processing method.

See Also

hcLastError, hcSetErrorAction

hcSetErrorAction

This function changes the way errors are processed.

API header

void hcSetErrorAction (int err);

FORTRAN interface

subroutine hfSetErrorAction (action)
integer action

VISUAL BASIC declaration

Declare Function hbSetErrorAction Lib "hapi.dll" Alias "hcSetErrorAction"
(ByVal action As Integer) As Long

292 Appendix C

C/C++:

FORTRAN:
VB:

The API functions

Parameters

‘err’ - the value indicating how errors are to be processed. Must be a sum of
the following flags defined in ‘hc.h’”:

errACTION_NO - do not perform any action on any error
errfACTION_MESS BOX - display message box with error message
errACTION_DISCONNECT - disconnect the application from HyperChem
errACTION_EXIT - immediately exit from application

errDDE_REP - report low level DDE error messages

errDDE_NO_REP - do not report low level DDE error messages

‘action’ -indicates how errors are processed. See above for symbolic names.
N/A

Return Value

The function does not return any data.

Remarks

There are situations when the user does want to change the default error
processing. By combining the value of flags in the appropriate sum it is
possible to get different actions on errors, ranging from no action
(errACTION_NO) to full information (errACTION_MESS_BOX |
errDDE_REP) and, possibly, exiting from current application
(errACTION_EXIT).

See Also

hcGetErrorAction, hcLastError

Classification of HAPI Calls 293

The API functions

294 Appendix C

A

ab initio calculations 193, 226
align 213
Amber 100
amino acid 220
animate 227
application
DDE 106
Architecture 8
argument 30, 31, 51, 96
array HSV 33
atom coordinates 163, 185, 190, 197, 218
atom numbering 30, 59, 98, 193

B

back end 8, 11, 16, 135, 185, 189, 204, 219
remote 18, 219
BAS file 152
basis set 195, 226
binary communication 137, 139
binary message 139
block 144
bond 57, 215, 216, 217, 218
bond-breaking 56
books 158, 172, 193
Tcl 94
books on Tcl 23

Index

Boolean arguments 30, 51
Borland 3, 147, 148
button 96, 102, 195

button code 104
bypassing a dialog box 51

C

C 93, 135, 136, 158
C++ 93, 136, 147, 157
C60 58, 112
callback 129, 154, 155, 163
cancel 205, 210
Cancel button 46
Cancel menu 46
cancel-notify 30
caption 210
CDK 1

Components 2
center-of-mass 55
change-user-menuitem 37
charge 217, 218, 220
CHEM.SCR 53
chemical reactions 56
ChemPlus 16, 54, 115
chirality 190
Classification of Hcl Commands 203
client 106, 210
client-server 8, 16

295

clipboard 216
clipping 206
cold link 120
collision

reactive 55
color 215
command substitution in Tcl 95
communicating 135
communication 106, 219
communication channel 120
compiled scripts 54
configuration interaction 227
configure 102
console applications 10, 153
console programs 158
Console window 189
constraint 217
constraints 216
contour 228
control structures 55, 64
controls

VB 118
convergence 224, 226
coordinates of an atom 102
coordination 218
create-atom 59, 216
cursor 216
cursors 205
custom menus 6, 9, 21, 24, 37, 38
customizing HyperChem 1, 4, 8, 205
custom-title 47
cutoff 220, 226

D

DDE 7, 9, 12, 34, 105, 117, 125, 135, 152
Network 17

DDE communication 154

DDE conversations 106, 113

DDE server 106

DDE_ ADVISE 107

DDE_EXECUTE 107

DDE_ REQUEST 107

DDE_EXECUTE 109, 115

DDE_INITIATE 107
DDE_REQUEST 115

declarations 212

default menus 44

development 157, 171

dialog box 51, 194

diffusion limited aggregation 202
dipole 228

dipole moment 100, 208, 209
dipole-moment 28, 49, 214, 218
direct command 49, 66, 138
direct commands 203

DLL 117, 127, 137, 147, 149, 174
dot surface 214

Dynamic Data Exchange 105, 125
Dynamic Link Library 8, 117, 147, 174

E

eigenvector 225

electronic spectra 227
electrostatics 220

embeddable 93

enable menu 46

energy 220, 223, 225, 226, 227, 228
ENT file 50

entry 98, 195

entry widget 98

enum 28, 30, 52

environment 147, 158, 186

errors 129, 130, 135, 146, 203, 211
event-driven applications 153
Excel macros 114

Exit 196

explicit hydrogens 58

expr 95

external Tcl/Tk 9, 130, 137

F

factory 211

factory settings 205
file 208, 216

file extension 52

file operations 208
finite state machine 33

296

float 52
form 118

hcGetStrVecElm 142, 260
hcInitAPI 138, 237

Fortran 3, 10, 93, 117, 135, 148, 172, 185, 189Hcl 6, 22, 97, 203

frame 96, 101
frequency 227
frontend 8, 11, 17, 193

G
gradient 224, 226

graph 57, 59, 228, 229
grid 229

GUI 17, 93, 117, 136, 185, 189, 194

H

Hcl command 49

Hcl script 2, 9, 29, 38, 64, 97, 194
Hcl script command 128

Hcl text string 139

hcLastError 129, 146, 290
hcNotifyDataAvail 145, 283
hcNotifySetup 145, 282
hcNotifyStart 129, 145, 280
hcNotifyStop 129, 145, 281
hcQuery 45, 97, 128

HAPI 9, 10, 105, 117, 126, 147, 152, 193, 201 hcQueryBin 139, 146, 245

HAPI calls 105, 135, 136

HAPI library 138

hard-wired menus 38

hcAlloc 145, 286

hcConnect 128, 138, 188, 238
hcCopy 128

hcDisconnect 128, 138, 188, 240
hcExec 24, 46, 97, 128, 195, 196
hcExecBin 139, 244

hcExecTxt 138, 188, 241
hcExit 138, 241

hcFree 146, 287

hcGetBlock 144, 263
hcGetErrorAction 130, 146, 291
hcGetint 140, 247

hcGetintArr 140, 250
hcGetintArrElm 140, 251
hcGetintVec 140, 249
hcGetIntVecElm 140, 254
hcGetNotifyData 129, 145, 284
hcGetReal 141, 248
hcGetRealArr 141, 253
hcGetRealArrEIm 141, 256
hcGetRealArrXYZ 141, 257
hcGetRealVec 141, 252
hcGetRealVecElm 141, 255
hcGetRealVecXYZ 141, 258
hcGetStr 142, 259
hcGetStrArrEIm 142, 261

hcQueryTxt 138, 146, 188, 242
hcSetArrElm 144

hcSetBlock 145, 279
hcSetErrorAction 129, 146, 292
hcSetint 142, 264
hcSetIntArr 142, 267
hcSetIintArrElIm 143, 268
hcSetintVec 142, 266
hcSetintVecElm 143, 271
hcSetReal 143, 265
hcSetRealArr 143, 270
hcSetRealArrElm 143, 273
hcSetRealArrXYZ 144, 274
hcSetRealVec 143, 201, 269
hcSetRealVecElm 143, 272
hcSetRealVecXYZ 143, 275
hcSetStr 144, 276
hcSetStrArrEIm 278
hcSetStrVecElm 144, 277
hcSetTimeouts 129, 146, 289
hcShowMessage 146, 288
header files 136, 147
heat-of-formation 219
hfExecTxt 193

hfGetRealArr 199
hfSetRealArr 193
hide-toolbar 47

hot link 107, 121

HSV 3, 8, 25, 27, 66, 99, 106, 120, 128, 138,

297

196, 203
arguments 30
array 33
environment 58
read 29, 49, 138
scalar 31
vector 32
write 29, 49, 138

hsv.h
generating 140
huckel 225
hydrogen 219
hydrogen bonds 215
hydrogens 215, 216
HyperChem API 2, 135, 146, 147, 152

HyperChem Application Programming Inter-

face 2, 105, 117, 135

interpreter 93, 125
isosurface 215, 229
ITEM 44
item

DDE 106
K
keyboard accelerator 39

L

label 101, 195

labels 96, 215, 217
legacy applications 153
legacy code 117

legacy programs 10
library 135, 147, 149, 188
LineDown 112

LineUp 112

LinkExecute 121

HyperChem Command Language 6, 22, 49, 93Linkltem 120, 121

121, 125, 136
HyperChem OS 136
HyperChem state variables 3, 27
HyperEHT 12
HyperGauss 12, 193
HyperMM+ 12
HyperNDO 12, 189
HyperNewton 12, 189
HyperNMR 16

images 216

IMSG 15, 34

include file 137

inertial axes 214, 219

info 211

infra red 227

inhibit redisplay 213

initialization script 53

integer 30

integer, arguments 52

Integrated Development Environment 187
INTERFACE 150

interface to HyperChem 1, 6, 135

LinkMode 120, 121
LinkRequest 120
LinkTopic 120

load command 127
LoadHAPI 137, 149, 179
loading 122
load-time 147, 149
load-user-menu 38
log files 212
logging 212

M

MacroButton 110
macros 108, 111, 115
MAIN subroutine 111
makefile 148, 149
master 13

master - slave Architecture 13

memory allocation 145, 154
MENU 44
menu 205, 210
adding 37
enable 46
menu activation 49, 50, 67

298

menu caption 210

menu file 24, 38

Menu Files 2

menu invocation 138

menu item 39, 50

menu structure 21

MENUITEM 44

menuitem 210

message 24, 49, 120, 211
status 212

message box 146

message passing 106

messages 7, 14, 33, 106, 153, 155, 205

messaging 105

metafile 216

methane 57

MFC 10, 157, 171

Microsoft Developer Studio 149

Microsoft Excel 2, 17, 105, 113

Microsoft Foundation Classes 10, 157, 171

Microsoft Windows 105

Microsoft Windows API 146

Microsoft Word 2, 105, 107

mnu file 37

model builder 58, 216

molecular dynamics 55, 222

molecular graph 59

molecular mechanics 100, 219

monitor HyperChem 130

Monte Carlo 222

mouse 206

mp2 226

multiplicity 218

N

neighbors 217

network 17

new version of Tcl/Tk 126
NMAKE 159

notification 129, 130, 145, 159
notification agent 154
notifications 29, 126, 153, 210
notify-on-update 30

nucleic acid 221
numbering of atoms 30

O

OCR file 54

OLE 106, 135

OMSG 15, 29, 34, 209, 210
open architecture 13
open-shell 56

operating system 21
optimization 223

orbital 224, 225, 227
orbitals 193, 196, 200, 202
oscillator strength 228
Ousterhout, John 93

P

pack 24, 97, 99, 104, 195
package 127

parameter set 220

pdb 208

periodic 205, 215
perspective 214

Petzold, Charles 158
playback 223

POINT 55

pop 209, 210

Power Station 3, 150
print 205, 212
print-variable-list 67, 213
procedures in Tcl 96
programming 93, 98, 147, 153, 157, 171
Protein Data Bank 50
protocol 13, 106, 135
push 209, 210

Q

QCPE 189

guantum mechanics 224
query-response-has-tag 29, 45, 99
query-value 29, 50, 97, 209

R

read 153
read/write 28, 66

299

reading HSV 29
read-script 44, 209
read-tcl-script 25, 44, 125, 209
real number 52

recursive scripts 54
registering of HSV 27
relief ridge on label 101
render 214, 229

request to HyperChem 35
residue 221

restraint 224

RHF 56, 201

ribbons 215

rotate 213

rotate example 43
rotation 206

runtime 147, 149

S

scalar HSV 31

scr file 22, 50

script 33
arguments 30
initialization 53
instantiation 54
recursive 54

script argument 30

script command 203

script commands 4, 7, 22, 49, 67

script editor 54

script file 22, 52

script menu 37

SDK 10, 157, 171

select then operate 59

selecting 66

selection 55, 203, 206, 215

selection scripts 206

semi-empirical methods 225

server 16, 35, 106

set 95

single point calculations 204

slave 13

solvation 205

source command 131
spectra 227
spreadsheet 105, 113
static linkage 148
stereo 214, 215
stereochemistry 217
string 30, 51, 95, 144

T

Tcl 23, 55, 93
procedures 96
Tcl books 94
Tcl commands 95
Tcl file 24, 125, 131
Tcl resources 94
Tcl script 97, 100, 130, 194
Tcl/Tk 6, 93, 125
Tcl/TK interpreter 125, 147
Tcl/Tk script 2, 6, 9, 22, 45, 155
TclOnly 24, 45, 96
temperature 222
template 113
template file 108
text communication 138
text object in VB 120
THAPI 126, 127, 128
timeout 129, 146
title 205
of window 47
Tk 6, 23, 55, 127
Tk dialog box 47, 199
TK window 132
tool command language 6
toolbar 47, 205
Toolkit 9, 93
topic
DDE 106
total-energy 204
translate 213
translation 206
type 19, 22, 49
type 2 9, 22, 93

300

U Z

UHF 56, 224 zindo 225
ultra violet 227 zoom 206, 214
UMSG 15, 33

UNIX 1, 17, 18, 105, 127, 153, 186
unloading 122
update 45, 47

Vv

variable 99

variables in Tcl 95

vector HSV 32, 99

vector variable 113

velocities 56, 208, 218

vertical ordering 97

vibrational analysis 205, 215

Visual Basic 2, 9, 105, 117, 137, 147, 148, 152,
202

Visual Basic controls 118

Visual C++ 3, 147, 157, 171

VMSG 15, 34

w

warning 212

widget 46, 96, 100, 118, 127
window title 47
window_color 139
window-color 22, 27, 114, 120, 139, 177, 215
Windows API 10, 157
WinMain 154, 163
WINSOCK 18, 147

wish 126, 148

Wizard 172, 174, 176
WndProc 163

Word Basic 111

Word Macros 108

word processor 105

World Wide Web 23, 94, 115
write 153

writing HSV 29

X
XLM files 115

301

302

	HyperChem® for Windows and NT
	The Chemist’s Developer Kit (CDK):
	Customizing HyperChem
	Interfacing to HyperChem

	Copyright © 1996 Hypercube, Inc.
	All rights reserved

	Chapter 1� Introduction 1
	Chapter 2� Architecture of HyperChem 11
	Chapter 3� Customizing HyperChem 21
	Chapter 4� HyperChem State Variables 27
	Chapter 5� Custom Menus 37
	Chapter 6� Type 1 (Hcl) Scripts 49
	Chapter 7� Type 2 (Tcl/Tk) Scripts 93
	Chapter 8� DDE Interface to HyperChem 105
	Chapter 9� DDE and Visual Basic 117
	Chapter 10� External Tcl/Tk Interface 125
	Chapter 11� The HAPI Interface to HyperChem 135
	Chapter 12� Development Using the Windows API 157
	Chapter 13� Development Using the MFC 171
	Chapter 14� Console C and Fortran Applications 185...
	Chapter 1
	Introduction
	The Chemist’s Developer Kit
	CDK for Windows or NT
	Equivalent Unix CDK

	Components of the CDK
	Components Included with Release 5
	Other Suggested Tools
	Suggested Compilers

	HyperChem State Variables
	Customizing HyperChem
	Internal Script commands
	HyperChem Command Language (Hcl)
	Tool Command Language (Tcl/Tk)

	Custom Menus

	Interfacing to HyperChem
	Dynamic Data Exchange
	External Script Messages
	The HyperChem Application Programming Interface (H...

	Overview of Chapters

	Chapter 2
	Architecture of HyperChem
	Introduction
	The Front End - Back End Architecture
	The Older Master - Slave Architecture
	The Open Architecture
	UMSG and VMSG
	IMSG and OMSG

	The Newer Client - Server Architecture
	The Network Architecture
	Network DDE
	UNIX
	Remote Back Ends
	Mixing UNIX and Windows or NT

	Chapter 3
	Customizing HyperChem
	Introduction
	A Flexible Development Platform
	What are Scripts?
	Type 1 (Hcl) Scripts
	Type 2 (Tcl/Tk) Scripts
	Custom Menus

	Chapter 4
	HyperChem State Variables
	Introduction
	Registering of HSV’s
	An Example of an HSV
	Read/Write Nature of HSV’s
	Using HSV’s
	Writing
	Reading
	Notifications
	Atom Numbering for HSV’s
	Argument Types for HSV’s
	Boolean
	string
	filename
	enum
	int
	float

	Kinds of HSV’s
	Scalar HSV’s
	Vector HSV’s
	Array HSV’s

	A Finite State Machine View of HyperChem
	An HSV Server View of HyperChem

	Chapter 5
	Custom Menus
	Introduction
	Script Menu Items
	Menu Files
	Simple Example
	Further Customization

	Chapter 6
	Type 1 (Hcl) Scripts
	Introduction
	Hcl Script Commands
	HSV’s
	Menu Activations
	Direct Commands
	Arguments
	Boolean
	string
	filename
	enum
	int
	float

	Script Files
	CHEM.SCR
	Compiled Scripts
	Recursive Scripts
	Script Editor

	Examples
	Reactive Collision of Two Molecules
	Assign Target Position
	Assign Collision Velocities
	Wave Function Computation Parameters
	The Collision
	Building and Optimizing C60
	Setup
	Drawing the First Pair of Atoms
	Finish First Level Pentagon
	Build Remaining Layers
	Color Bottom and Rotate
	Zoom Structure
	Create an SO2 Molecule Inside C60
	Optimize SO2 inside Cavity

	Catalog of HSV’s and Direct Script Commands

	Chapter 7
	Type 2 (Tcl/Tk) Scripts
	Introduction
	Elements of Tcl
	Books
	Internet
	What is Tcl?
	Commands and Arguments
	Variables and Values
	Command Substitution
	Procedures and Control Structures
	Tk

	Hcl Embedding
	hcExec
	hcQuery

	Examples
	Calculating the Number of Atoms
	Calculating a Dipole Moment
	Labels
	Button

	Chapter 8
	DDE Interface to HyperChem
	Introduction
	DDE versus HAPI
	Use of DDE in Windows Applications

	Basic Properties of DDE
	DDE Message Types
	DDE_INITIATE
	DDE_ EXECUTE
	DDE_ REQUEST
	DDE_ ADVISE

	DDE Interface to Microsoft Word
	Red and Green Example
	1. Bring up a copy of Microsoft Word and type a fe...
	2. Select the <Tools/Macro...> menu item and creat...
	3. Add the following Word Basic code to create the...
	4. Select the menu item <Insert/Field...> to bring...
	5. Select the “Field Name” corresponding to MacroB...
	6. Repeat the whole process for a “Green button”.

	Extended Example
	ActivateHC
	ConnectHC:
	ExecuteCmd
	GetData
	DisconnectHC

	DDE Interface to Microsoft Excel
	Red (and Green)
	Additional Macros

	Chapter 9
	DDE and Visual Basic
	Introduction
	VB for GUIs or Computation
	VB with DDE or HAPI Calls

	Red and Green
	Basic Form and Controls
	Start Up (Load)
	A Cold Link Request
	A Hot Link
	Execute
	Unload

	A HAPI Interface to VB

	Chapter 10
	External Tcl/Tk Interface
	Introduction
	Why External?
	1. You want to connect to HyperChem from another c...
	2. You want your Tcl program to react to changes i...
	3. A new version of Tcl/Tk becomes available and i...
	4. The internal implementation of Tcl/Tk does not ...

	Invoking External Tcl/Tk
	The THAPI package
	Commands
	hcConnect <instance>
	hcDisconnect
	hcExec hcl_script_command
	hcQuery hsv
	hcCopy source_file desination_file
	hcNotifyStart hsv
	hcNotifyStop hsv
	hcGetNotifyData notification_data
	hcSetTimeouts exec_timeout query_timeout rest_time...
	hcLastError error_text
	hcSetErrorAction action_flag
	hcGetErrorAction

	A Notification Example

	Chapter 11
	The HAPI Interface to HyperChem
	Introduction
	Towards a Chemical Operating System
	The Components
	The HAPI Calls
	Initialization and Termination
	BOOL hcInitAPI (void)
	BOOL hcConnect (LPSTR lszCmd)
	BOOL hcDisconnect (void)
	void hcExit(void)
	Discussion

	Text-based Basic Communication Calls
	BOOL hcExecTxt (LPSTR script_cmd)
	LPSTR hcQueryTxt (LPSTR var_name)
	Discussion

	Binary-based Basic Communication Calls
	BOOL hcExecBin (int cmd, LPV args, DWORD args_leng...
	LPV hcQueryBin(int hsv, int indx1, int indx2, int...
	Discussion
	Binary Format

	Binary-based Get Integer Calls
	int hcGetInt (int hsv)
	int hcGetIntVec(int hsv, int* buff, int max_lengt...
	int hcGetIntArr (int hsv, int* buff, int max_lengt...
	int hcGetIntVecElm (int hsv, int index)
	int hcGetIntArrElm (int hsv, int atom_index, int m...
	Discussion

	Binary-based Get Real Calls
	double hcGetReal (int hsv)
	int hcGetRealVec(int hsv, double* buff, int max_l...
	int hcGetRealArr (int hsv, double* buff, int max_l...
	double hcGetRealVecElm (int hsv, int index)
	double hcGetRealArrElm (int hsv, int atom_index, i...
	int hcGetRealVecXYZ (int hsv, index, double* x, do...
	int hcGetRealArrXYZ (int hsv, int atom_index, int ...
	Discussion

	Binary-based Get String Calls
	int hcGetStr (int hsv, char* buff, int max_length)...
	int hcGetStrVecElm (int hsv, int index, char* buff...
	int hcGetStrArrElm (int hsv, int atom_index, int m...
	Discussion

	Binary-based Set Integer Calls
	int hcSetInt (int hsv, int value)
	int hcSetIntVec(int hsv, int* buff, int length)
	int hcSetIntArr (int hsv, int* buff, int max_lengt...
	int hcSetIntVecElm (int hsv, int index, int value)...
	int hcSetIntArrElm (int hsv, int atom_index, int m...
	Discussion

	Binary-based Set Real Calls
	int hcSetReal (int hsv, double value)
	int hcSetRealVec(int hsv, double* buff, int lengt...
	int hcSetRealArr (int hsv, double* buff, int lengt...
	int hcSetRealVecElm (int hsv, int index, double va...
	int hcSetRealArrElm (int hsv, int atom_index, int ...
	int hcSetRealVecXYZ (int hsv, index, double x, dou...
	int hcSetRealArrXYZ (int hsv, int atom_index, int ...
	Discussion

	Binary-based Set String Calls
	int hcSetStr (int hsv, char* string)
	int hcSetStrVecElm (int hsv, int index, char* stri...
	int hcSetArrElm (int hsv, int atom_index, int mol_...
	Discussion

	Get and Set Blocks
	int hcGetBlock (int hsv, char* buff, int max_lengt...
	int hcSetBlock (unt hsv, char* buff, int length)
	Discussion

	Notification Calls
	int hcNotifyStart (LPSTR hsv)
	int hcNotifyStop (LPSTR hsv)
	int hcNotifySetup (PFNB pCallBack, int NotifyWithT...
	int hcNotifyDataAvail (void)
	int hcGetNotifyData (char* hsv, char* buff, int ma...
	Discussion

	Memory Allocation
	void * hcAlloc (size_t, n_bytes)
	hcFree (void* pointer)
	Discussion

	Auxiliary Calls
	void hcShowMessage (LPSTR message)
	void hcSetTimeouts (int ExecTimeout, int QueryTime...
	int hcLastError (char* LastErr)
	int hcGetErrorAction (void)
	void hcSetErrorAction (int err)
	Discussion

	The HAPI Dynamic Link Library (HAPI.DLL)
	How to use the HyperChem API
	Accessing the HyperChem API from C/C++ code
	Run-Time Dynamic Linking
	Load-Time Dynamic Linking

	Accessing the HyperChem API from Fortran code
	Accessing the HyperChem API from Visual Basic Code...
	Accessing the HyperChem API from Tcl/Tk code
	Considerations for Console-based Applications
	The Notification Agent

	Examples of HAPI Calls
	C, C++
	Text-based
	Binary-based

	Fortran
	Text-based
	Binary-based

	Visual Basic
	Text-based
	Binary-based

	Chapter 12
	Development Using the Windows API
	Introduction
	Microsoft Development Tools
	Programming Assistance
	Language

	A First Example
	1. Change to the COLORS directory
	2. Type MSC.BAT
	3. Type NMAKE
	4. Make sure HyperChem is running
	5. Type COLORS to execute COLORS.EXE

	Modification of a Molecule’s Coordinates

	Chapter 13
	Development Using the MFC
	Introduction
	Microsoft Development Tools
	Programming Assistance
	Language

	A First Example
	1. Select <File/New...>
	2. Type in a name for your application and hit <Cr...
	3. Choose <Dialog based> and hit <Next>.
	4. Choose <About box> and <3D-controls> before hit...
	5. Choose <As a Shared DLL> and <Yes, Please> prio...
	6. Choose <Finish> and <OK> to complete the AppWiz...
	Modifications
	1. Click on the <ResourceView> tab at the bottom o...
	2. Double click on <IDD_CPPCOLOR_DIALOG> to place ...
	3. Click on <OK> to select the button and then <Fi...
	4. Repeat for the Cancel button.
	5. Repeat for the TODO label.
	6. Create a Button on the dialog box.
	7. Copy and Paste the Button to create a second on...
	8. Double click on the first button to change its ...
	9. Repeat for the second Green button.
	10. Select the menu item <View/Class Wizard...>
	11. Select <IDC_RED> and <IDC_GREEN> in turn with ...
	12. Hit <Edit Code> and type in the correct code f...
	13. Repeat steps 11 and 12 for the green button.

	Included Files
	Dynamic Link Library and Connecting to HyperChem

	Cavity

	Chapter 14
	Console C and Fortran Applications
	Introduction
	Console Applications
	C or Fortran
	The Integrated Development Environment

	C Program
	Fortran Programs
	Reflect
	MiniGauss Orbitals
	Outline
	A New GUI Element
	The Main Program
	Get Molecule
	Wave function Calculation
	Displaying Orbitals and ...

	Diffusion Limited Aggregation

	Further Examples

	Appendix A
	Classification of Hcl Commands
	The Classes
	General Operations
	Single Point
	Solvation
	Customization
	Printing
	Other

	Cursors
	Mouse Mode
	Clipping
	Rotation
	Translation
	Zoom

	Selections
	Select Options
	Select
	Ask About Selection
	Operate on Selection
	Named Selections
	Other

	File Operations
	Molecule File
	Options
	PDB File
	Import/Export
	Other

	Scripts
	Script Files
	Execution
	Notifications
	OMSGs
	Menus
	Stack Operation
	Other

	Info
	Errors
	Logging
	Auxiliary
	Declarations
	Warnings
	Screen Output
	Version
	Other

	Viewing
	Alignment
	Redisplay
	Rotation
	Translation
	Window
	Other

	Rendering
	General Options
	Specific Rendering Options
	Show - Don’t Show

	Coloring and Labeling
	Color
	Labels

	Images
	Model Building
	Options
	Drawing
	Constraints
	Other

	Stereochemistry
	Atom Properties
	Labels
	Coordinates and Velocities
	Other

	Molecule Properties
	Charge-Multiplicity
	Counts
	Properties

	Back Ends
	Basic
	Large Communication Structures
	Remote Back Ends

	Molecular Mechanics Calculations
	Method
	Energy Components
	Cutoffs
	Scale Factors
	Parameters

	Amino Acids and Nucleic Acids
	Amino Acids
	Nucleic Acids
	General Residue

	Molecular Dynamics and Monte Carlo
	Basic
	Run Parameters
	Averaging
	Playback
	Monte Carlo Specific

	Optimization
	Basic
	Restraints

	General Quantum Mechanics
	Input Parameters
	Output Results

	Semi-empirical Calculations
	General
	Huckel
	ZINDO

	Ab Initio Calculations
	Input Options
	Basis Set
	2-electron Integrals
	Results

	Configuration Interaction
	Infrared Spectra
	Animations
	Spectra

	UV Spectra
	Plotting
	General Options
	2D
	3D
	Grid

	Appendix B
	Listing of Tcl Commands
	The Tcl Commands

	Appendix C
	Classification of HAPI Calls
	The API functions
	Functions for Initialization and Termination
	Functions for Text-based Communication
	Functions for Binary Communication
	Binary Execute and Query
	Functions for Binary ‘Get’
	Functions for Binary ‘Set’

	Functions for Processing Notifications
	Functions For Memory Allocation
	Auxiliary Functions

	Index

