РОССИЙСКАЯ АКАДЕНМИЯ НАУК ОРДЕНА ЛЕНИНА СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ФИЗИКИ им. Л.В. КИРЕНСКОГО

Препринт № 840 Ф

Кристаллы типа браунмиллерита

(Кристаллохимия, прогноз новых соединений)

Б.В. Безносиков К.С. Александров

Красноярск 2007 УДК 548.3.

Приводятся результаты кристаллохимического анализа слоистых структур типа браунмиллерита с общей химической формулой A_{n+1}B_nB'O_{3n+2}, где A, B, B' – катионы, O – кислород, *n* – число октаэдрических слоёв в элементарной ячейке. Структуры представляют собой взаимную упаковку октаэдрических и тетраэдрических анионных слоёв. Результаты прогноза показывают, что можно синтезировать порядка сотни новых соединений с A = Ca, Sr. Возможен синтез родственных соединений с многослойными структурами.

Материал препринта представлен и в электронной версии публикаций Института физики им. Л.В. Киренского СО РАН на сайте http://www.kirensky.ru в разделе «препринты».

Оглавление

		Стр.
1.	Введение	3
2.	Анализ структур	3
3.	Прогноз новых соединений	14
3.1.	Однослойные структуры	14
3.2.	Многослойные структуры	17
4.	Заключение	24
5.	Список литературы	25

Работа выполнена в лаборатории кристаллофизики Института физики им. Л.В. Киренского в рамках программы ОФИ РАН № 2.5 и Программы Президента РФ по поддержке ведущих научных школ РФ (грант НШ 4137–2006.2).

© Институт физики им. Л.В. Киренского СО РАН. 2007

Браунмиллерит A₂BB'O₅ – аниондефицитный аналог структуры перовскита ABO₃, кристаллизуется в ромбической сингонии [1].

1. Введение

Браунмиллерит – это минерал состава $Ca_2(Fe,AI)O_5$, имеет ромбическую кристаллическую решётку: *Рстп*, *Z* = 4, *a* = 5,567, *b* = 14,52, *c* = 5,349 Å (синтетический) [2].

Характерные магнитные свойства соединений типа браунмиллерита вызывают в последнее время большой интерес у исследователей [3-5]. Внимание к этим кристаллам привлечено и обнаружением эффекта колоссального магнетосопротивления у ряда марганцевых перовскитов и у слоистых перовскитоподобных кристаллов [1]. Магнетосопротивление – это изменение электрического сопротивления при приложении внешнего магнитного поля. Если электрическое сопротивление изменяется в магнитном поле на несколько порядков, этот эффект называют колоссальным магнетосопротивлением.

Задачей настоящей работы является анализ структур известных соединений и прогноз на этой основе новых представителей семейства, которые могли бы заинтересовать исследователей, прежде всего специалистов по физике магнитных явлений.

2. Анализ структур

В обзоре [1] сказано, что «для большинства браунмиллеритов рассматривают три варианта пространственной симметрии, отвечающие различным способам упорядочения тетраэдрических цепей разной конфигурации». А именно: *Imma*, *I2mb*, *Pnma*. Эти три варианта структур представлены на рис. 1 – 3.

Рис. 1. Структура браунмиллерита Ca₂(Fe,Al)O₅ [6, 7]. *Z* – число формульных единиц в элементарной ячейке.

Рис. 2. Структура Ca₂FeAlO₅ [7, 8].

Рис. 3. Структура Sr₂MnGaO₅ [3].

Пространственные группы этих кристаллов образуют последовательность:

 D_{2h}^{16} – Pnma – Pcmn, D_{2h}^{28} – Imma – Imcm, C_{ν}^{22} – I2mb – Ibm2 – Ima2.

Из геометрической кристаллографии известно, что вещества относятся к одному и тому же структурному типу только тогда, когда атомы располагаются в точках одних и тех же правильных систем одной и той же пространственной группы и, кроме того, атомы, занимающие точки каждой данной правильной системы, имеют одинаковую координацию [9, 10].

Следовательно, если в структуре изменилась пространственная группа, то изменился и структурный тип кристалла. Исходя из определения, эти три пространственные группы представляют три структурных типа. Но эти структуры имеют визуальное сходство. И по примеру перовскитоподобных соединений могут быть отнесены к единому семейству. Структурный тип браунмиллерита следует считать с пространственной группой D_{2h}^{16} , как это было определено для самого минерала. Тогда фазы с пространственными группами D_{2h}^{28} и C_{2v}^{22} будут подобными браунмиллериту (браунмиллеритоподобными). Рисунки 1 – 3 подтверждают это подобие.

Известные нам структуры семейства браунмиллерита представлены в таблице 1. Координаты атомов – в таблице 2.

Структуры, родственные типу браунмиллерита

Обозначения: *r* – ромбическая сингония, *m* – моноклинная сингония, НТФ – низкотемпературная фаза. *Z* – число формульных единиц в элементарной ячейке структуры.

Представитель	Примечания	Литература	Простран-	a Å	b. Å	c. Å	z
			ственная.	.,,,,	,	-,	
Ba ₂ In ₂ O ₅		[1, 2]	r	16,79	6,08	5,89	4
Ba ₂ Tl ₂ O ₅		[11]	Pcmn	6,264	17,258	6,05	4
Ba ₂ Tl ₂ O ₅	ΗΤΦ	[2]	m	5,836	6,226	17,34	4
						β = 91,34°	
Ca ₂ Al ₂ O ₅		[2]	r	5,41	14,45	5,23	4
Ca ₂ Co _{1,6} Ga _{0,4} O ₅		[12]	Pnma	5,3022	14,884	5,527	4
Ca ₂ Fe _{0,5} Ga _{1,5} O ₅		[13]	Pcmn	5,597	14,654	5,383	4
Ca ₂ Fe _{1,5} Co _{0,5} O ₅		[14]	Pcmn	5,578	14,757	5,361	4
Ca ₂ Fe _{1,5} Cr _{0,5} O ₅		[14]	Pcmn	5,589	14,769	5,417	4
Ca ₂ Fe _{1,7} Co _{0,3} O ₅		[14]	Pcmn	5,59	14,761	5,378	4
Ca ₂ Fe ₂ O ₅	< 963 K*	[15]	Pnma	5,4931	15,038	5,6511	4
Ca ₂ Fe ₂ O ₅		[13]	Pcmn	5,599	14,771	5,429	4
Ca ₂ Fe ₂ O ₅		[6]	Pcmn	5,64	14,68	5,39	4
Ca ₂ FeAlO ₅		[2]	Pcmn	5,567	14,52	5,349	4
Ca ₂ FeAlO ₅		[6]	Pcmn	5,58	14,50	5,34	4
Ca ₂ FeAlO ₅		[8]	lbm2	5,584	14,60	5,374	4
Ca ₂ FeGaO ₅		[13]	Pcmn	5,603	14,69	5,386	4
Ca ₂ Mn ₂ O ₅		[2]	r	5,961	14,38	5,72	4
Ca₂MnAlO₅	2 K	[1]	<i>l2m</i> b	5,231	14,953	5,463	4
Ca₂MnAlO₅	293 K	[2]	r	5,465	14,90	5,244	4
Ca ₂ MnGaO _{5,045}	293 K	[1]	Pnma	5,268	15,301	5,469	4
Ca ₂ MnGaO _{5,09}	293 K	[1]	Pnma	5,271	15,267	5,472	4
Ca ₂ MnGaO _{5,39}	293 K	[1]	Pnma	5,303	14,940	5,428	4
CaLaCuGaO₅]	[2]	Imcm	16,01	5,498	5,330	4
$Sr_{0,5}Ca_{1,5}Fe_2O_5$		[2]	Pmcn	5,622	14,95	5,450	4
$Sr_2In_2O_5$		[13]	lma2	6,049	15,84	5,81	4

Представитель	Примечания	Литература	Простран- ственная.	<i>a</i> , Å	b, Å	<i>c</i> , Å	Z
			группа				
Sr ₂ MnGaO _{4,97}	293 K	[1]	l2mb, Imma	5,402	16,130	5,564	4
Sr ₂ MnGaO ₅		[3]	lma2	16,197	5,526	5,386	4
Sr ₂ MnGaO ₅		[3]	Imcm	16,197	5,526	5,386	4
Sr ₂ MnGaO _{5,01}	293 K	[1]	l2mb, Imma	5,386	16,197	5,526	4
Sr ₂ MnGaO _{5,46}	293 K	[1]	Bmmm	5,367	7,959	5,386	2
Sr ₂ MnGaO _{5,5}		[3]	P4/mmm	3,801		7,960	
Sr ₂ MnGaO _{5,5}	293 K	[1]	Cmmm	5,383	5,365	7,945	2
SrCaFe ₂ O ₅		[2]	Pmcn	5,636	15,17	5,476	4
SrLaCuGaO₅		[16]	lma2	16,51	5,510	5,369	4
SrLaCuGaO₅		[2]	Ima2	16,51	5,520	5,352	4
SrLaCuGaO₅		[17]	Ima2	16,383	5,299	5,328	4
Sr _{1,13} La _{0,87} CuGaO ₅		[2]	lma2	16,54	5,515	5,340	4
SrNdCuGaO₅		[16]	Ima2	16,27	5,518	5,338	4
SrPrCuGaO₅		[16]	lma2	16,336	5,500	5,353	4

* > 963 К у Са₂Fe₂O₅ пространственная группа *Imma*.

Таблица 2

Координаты атомов в структурах семейства браунмиллерита

Соедине- ние	Ca ₂ FeAlO ₅	Ca ₂ FeAlO ₅	Ca ₂ FeGaO ₅	$Ca_2Fe_{0,5}Ga_{1,5}O_5$
Литерату- ра	[6, 7]	[6, 7]	[13]	[13]
Простр. гр.	Pcmn	Ibm2	Pcmn	Pcmn
<i>a</i> , Å	5,58	5,584	5,603	5,597
<i>b</i> , Å	14,50	14,60	14,691	14,654
<i>c</i> , Å	5,34	5,374	5,386	5,383
Атом	Ca (8 <i>d</i>)	Ca (8c)	Ca (8 <i>d</i>)	Ca (8 <i>d</i>)
x/a	0,028	0,0273	0,0255	0,0260
y/b	0.112	0,1087	0.1083	0.1081
z/c	0,480	0,4920	0,4839	0,4833
Атом	(Fe _{0,5} Al _{0,5}) ₁ (4 <i>a</i>)	(Fe _{0,76} Al _{0,24}) ₁ (4 <i>a</i>)	Fe (4 <i>a</i>)	Fe (4 <i>a</i>)
x/a	0	0	0,0	0,0
y/b	0	0	0,0	0,0
z/c	0	0	0,0	0,0
Атом	$(Fe_{0,5}AI_{0,5})_2(4c)$	(Fe ₀₂₄ Al _{0,76}) ₁ (4b)	Ga (4 <i>c</i>)	Ga (4 <i>c</i>)
x/a	0,928	0,9283	0,9311	0,9310
y/b	0,250	1/4	0,25	0,25
z/c	0,945	0,9533	0,9501	0,9501
Атом	O ₁ (8 <i>d</i>)	O ₁ (8 <i>c</i>)	O ₁ (8 <i>d</i>)	O ₁ (8 <i>d</i>)
x/a	0,250	0,2523	0,241	0,236
y/b	0,985	0,9861	0,985	0,985
z/c	0,250	0,2491	0,259	0,274
Атом	O ₂ (8 <i>d</i>)	O ₂ (8 <i>c</i>)	O ₂ (8 <i>d</i>)	O ₂ (8 <i>d</i>)
x/a	0,055	0,0680	0,071	0,069
y/b	0,133	0,1439	0,142	0,142
z/c	0,000	0,0246	0,025	0,018
Атом	O ₃ (4 <i>c</i>)	O ₃ (8b)	O ₃ (4 <i>c</i>)	O ₃ (4 <i>c</i>)
x/a	0,863	0,8607	0,873	0,876
y/b	0,250	1/4	0,25	0,25
z/c	0,607	0,6193	0,605	0,602

Таблица 2 (продолжение)

Соединение	$Ca_2Fe_2O_5$	$Ca_2Fe_2O_5$	Ba ₂ Tl ₂ O ₅	Sr ₂ MnGaO ₅	Sr ₂ MnGaO ₅
Литература	[18]	[6]	[11]	[3]	[3]
Простр. гр.	Pcmn	Pcmn	Pcmn	lbm2	lbm2
<i>a</i> , Å	5,599	5,64	6,264	5,5257	5,5257
b, Å	14,771	14,66	17,258	16,1971	16,1971
<i>c</i> , Å	5,429	5,39	6,05	5,3863	5,3863
Атом	Ca (8 <i>d</i>)	Ca (8 <i>d</i>)	Ba (8 <i>d</i>)	Sr (8 <i>c</i>)	Sr (8 <i>c</i>)
x/a	0,0233	0,028	0,0155	0,012	0,012
y/b	0.1079	0.112	0.1104	0.111	0.111
z/c	0,4806	0,480	0,4844	0,4926	0,4926
Атом	Fe₁(4 <i>a</i>)	Fe₁(4 <i>a</i>)	Tl₁(4 <i>a</i>)	Mn(4 <i>a</i>)	Mn(4 <i>a</i>)
x/a	0	0	0	0	0
y/b	0	0	0	0	0
z/c	0	0	0	0	0
Атом	Fe ₂ (4c)	Fe ₂ (4c)	Tl ₂ (4c)	Ga(4 <i>b</i>)	Ga(4 <i>b</i>)
x/a	0,9338	0,928	0,9447	0,933	0,933
y/b	1/4	0,250	1/4	1/4	1/4
z/c	0,9459	0,945	0,9671	0,036	0,036
Атом	O ₁ (8 <i>d</i>)	O ₁ (8 <i>d</i>)	O ₁ (8 <i>d</i>)	O ₁ (8 <i>c</i>)	O ₁ (8 <i>c</i>)
x/a	0,2366	0,250	0,230	0,254	0,254
y/b	0,9839	0,985	0,987	0,996	0,996
z/c	0,2632	0,250	0,263	0,250	0,250
Атом	O ₂ (8 <i>d</i>)	O ₂ (8 <i>d</i>)	O ₂ (8 <i>d</i>)	O ₂ (8c)	O ₂ (8 <i>c</i>)
x/a	0,0716	0,055	0,070	0,042	0,042
y/b	0,1403	0,133	0,137	0,145	0,145
z/c	0,0234	0,000	0,026	0,002	0,002
Атом	O ₃ (4c)	O ₃ (4c)	O ₃ (4 <i>c</i>)	O ₃ (4 <i>b</i>)	O ₃ (4 <i>b</i>)
x/a	0,8746	0,863	0,883	0,874	0,874
y/b	1/4	0,250	1/4	1/4	1/4
z/c	0,6005	0,607	0,607	0,616	0,616

Координаты атомов в структурах семейства браунмиллерита

Таблица 2 (окончание)

Координаты атомов в структурах семейства браунмиллерита

Соединение	SrLaCuGaO₅	SrNdCuGaO₅	SrPrCuGaO ₅	Sr ₂ MnGaO ₆
Литература	[16]	[16]	[16]	[3]
Простр. гр.	lbm2	lbm2	Ibm2	Imcm
<i>a</i> , Å	5,510	5,518	5,5002	16,1966
b, Å	16,51	16,27	16,3358	5,5257
<i>c</i> , Å	5,369	5,338	5,3534	5,3864
Атом	Sr/La (8 <i>c</i>)	Sr/Nd (8c)	Sr/Pr (8 <i>c</i>)	Sr (8 <i>h</i>)
x/a	0,016	0,0180	0,014	0,1112
y/b	0.107	0.1068	0.1073	0,1116
z/c	1/2	0,5	0,5	0,5
Атом	Cu(4 <i>a</i>)	Cu(4 <i>a</i>)	Cu(4 <i>a</i>)	Mn (4 <i>a</i>)
x/a	0	0,0	0,0	0
y/b	0	0,0	0,0	0
z/c	0	0,002	0,01	0
Атом	Ga(4 <i>b</i>)	Ga(4 <i>b</i>)	Ga(4 <i>b</i>)	Ga (8 <i>i</i>)
				<i>g</i> = 0,5
x/a	0,935	0,932	0,94	0,25
y/b	1/4	0,25	0,25	0,0675
z/c	0,962	0,97	0,972	0,0423
Атом	O ₁ (8 <i>c</i>)	O ₁ (8 <i>c</i>)	O ₁ (8 <i>c</i>)	O ₁ (8 <i>g</i>)
x/a	0,25	0.25	0.23	0,0040
y/b	0,01	0,003	0,006	0,25
z/c	0,25	0,25	0,23	0,25
Атом	O ₂ (8 <i>c</i>)	O ₂ (8c)	O ₂ (8 <i>c</i>)	O ₂ (8 <i>h</i>)
x/a	0,063	0,07	0,064	0,1455
y/b	0,146	0,146	0,151	-0,0428
z/c	0,01	0,01	0,03	0
Атом	O ₃ (4 <i>b</i>)	O ₃ (4 <i>b</i>)	O ₃ (4 <i>b</i>)	O ₃ (8 <i>i</i>)
				<i>g</i> = 0,5
x/a	0,859	0,863	0,87	0,25
y/b	0,25	0,25	0,25	0,3760
z/c	0,519	0,63	0,63	0,8869

Относительные значения координат для фаз *Pcmn* и *lbm*2 близки независимо от симметрии решётки.

Если рассматривать структуру браунмиллерита, как производную от перовскита, то она должна получится при недостатке анионов в последней. Но в стехиометрическом составе браунмиллеритов суммы зарядов катионов и анионов сбалансированы. Все точки пространственной группы *Pcmn* (8*d*, 4*a*, 4*c*) заняты атомами полностью, пустых позиций нет. Так, что анионных вакансий, как таковых, в структуре типа браунмиллерита нет. *Вакансии это незанятые атомами узлы кристаллической решётки* [10, 19]. В структуре браунмиллерита в тетраэдрическом слое есть пустоты, но это не вакансии. Анионные вакансии могут появляться, если число анионов в химической формуле соединения меньше пяти. Дополнительные же анионы в составе обязаны увеличению валентности катионов. Анионные вакансии в родственных многослойных структурах, вносятся пакетами типа B (см. далее) или появляются при отклонении состава от стехиометрического.

Координационная формула браунмиллерита $A_2^{VIII+I}B^{VI}C^{IV}O_5$ (в верхних индексах координационные числа). Катион В находится в октаэдре, катион С – в тетраэдре. Октаэдры с тетраэдрами соединены через вершины. В Ca₂FeAlO₅ (*Pcmn*, *Z* = 4) [6, 7], рис. 1, в октаэдрической позиции находятся Fe_{0,5}Al_{0,5} и такой же состав Fe_{0,5}Al_{0,5} – в тетраэдрической позиции. По данным других авторов [7, 8] в таком же кристалле (рис. 2) в октаэдрической позиции – состав Fe_{0,76}Al_{0,24}, в тетраэдрической – Fe_{0,24}Al_{0,76}. Пространственная группа структуры – *Ibm*2, *Z* = 4.

При пространственной группе *Imcm* (= *Imma*) для Sr_2MnGaO_5 [6261] даётся удвоенное число близко расположенных позиций для атомов Ga и O(3) (см. табл. 2). Такая ситуация встречается в слоистых перовскитоподобных структурах [20, 21]. Это значит, что либо структура определена не точно, либо эти атомы в кристаллической решётке реориентируются, В такой структуре возможна низкотемпературная фаза с полным упорядочением атомов. Косвенным подтверждением этому может служить наличие моноклинной фазы в Ba₂Tl₂O₅ [2] (см. табл. 1).

При исследовании браунмиллеритов $Ca_2Fe_{2-x}Al_xO_5$ [22] пространственная группа фаз менялась при изменении составов. При *x* = 0 она была *Pnma*, *Z* = 4. При *x* = 0,56 – *I2mb*. Объясняется это уменьшением размера Al^{3+} по отношению к Fe³⁺. Замещение Fe³⁺ на Al^{3+} уменьшает температуру перехода на 15 °C с 0,1 Al^{3+} до 623°C при *x* = 0,65 [22]. Кроме того в чистом Ca₂Fe₂O₅ при 724°C обнаружен фазовый переход в объёмно центрированную структуру.

В работе [15] исследовались кристаллы Ca₂Fe₂O₅, выращенные из расплава при 1100 К. При комнатной температуре пространственная группа их – *Pnma*, выше 963 К – *Imma*. При 1100 К обнаружена новая несоразмерно модулированная фаза (*Imma*).

Приведённые данные показывают, что изменением состава можно получить разные фазы или реализовать структурные переходы.

3. Прогноз новых кристаллов

3.1. Однослойные структуры

Из табл. 1 видно: позиции А в структурах заняты в основном двумя катионами: Ca²⁺ и Sr²⁺, реже – Ba²⁺. В позициях В и С представлены катионы средней величины с ионными радиусами по системе Шеннона [23] от 0,39 до 0,80 Å. Взаимные размеры ионов В и С в каждом конкретном составе должны быть такими, чтобы они хорошо себя «чувствовали» как в октаэдрическом, так и в тетраэдрическом кислородном окружении. Ситуация подобна шпинельным структурам.

Поэтому одним из признаков, для определения вероятных катионов В и С в новых браунмиллеритах, можно считать способность атомов средней величины к образованию шпинелей. Даже некоторые окислы: Al₂O₃, Fe₂O₃, Ga₂O₃, использовавшиеся для синтеза браунмиллеритов, способны образовывать шпинельные фазы. Ряд полуторных окислов, в том числе и перечисленные выше, имеют октаэдрические структурные фазы типа корунда. Более крупные катионы (Mn³⁺, In³⁺, Tl³⁺), участвующие в образовании браунмиллеритов, в полуторных окислах имеют структуры типа Mn₂O₃. Если использовать эти «наследственные» признаки, то можно ожидать получение новых браунмиллеритов с участием некоторых редкоземельных элементов.

Итак, позиции VI и IV в структурах заняты комбинацией трёхвалентных атомов. А могут ли эти позиции быть заняты атомами с разной валентностью? При образовании кристаллической решётки браунмиллерита из кубической структуры типа перовскита (представим себе такое) часть октаэдров превращается в тетраэдры. В идеальной кислородной октаэдрической кубической упаковке расстояние между центрами соседних октаэдров, соединённых вершинами, равно:

 $I_{B-B} = 2 \times 0,414R_X = 1,159$ Å (ионный радиус кислорода (R_X) равен 1,40 Å [23]). После образования тетраэдра оно сокращается:

*I*_{B-B} = (0,414 + 0,225)R_X = 0,895 Å. Таким образом, при реконструкции структуры расстояние между катионами соседних полиэдров (октаэдра и тетраэдра) может сократится на 22,7 %. И это сокращённое расстояние может оказаться препятствием для образования структур типа браунмиллерита в составах с высокозарядными комбинациями катионов. Так как в этом случае сильно возрастёт отталкивание между катионами соседних полиэдров.

Предполагаемая область образования структур семейства браунмиллерита представлена в табл. 3 для составов с A = Ca и Sr. В строках расположены катионы, образующие октаэдры, в столбцах – образующие тетраэдры. На пересечении строки и столбца – состав известного или прогнозируемого соединения. Границы областей проведены, в первую очередь, с учётом составов известных браунмиллеритов. Исключены: строки с Ga³⁺, он образует тетраэдры, и столбцы с Cu³⁺, для меди не характерна тетраэдрическая кислородная координация. Для неё присущи либо квадрат, либо тетрагональная призма. Некоторые составы в пределах выделенной области отмечены, как маловероятные для образования браунмиллеритов. Основанием для этого послужили примеры структур соединений Sr₂Cu₂O₅ [24], Sr₂Ni₂O₅ [25], Sr₂Mn₂O₅ [2].

В структуре $Sr_2Cu_2O_5$ (*Pbam*, *Z* = 2 [24]) и $Sr_2Mn_2O_5$ [2] для образования плотноупакованной октаэдрической структуры не хватило анионов. Структуры содержат пустоты (но не анионные вакансии). Координационное число стронция равно десяти, медь реализует два варианта пятикратного кислородного окружения. В этих структурах медь как бы поделила (усреднила) октаэдр с тетраэдром и окружение её получилось пятикратным.

Таблица 3

Предполагаемые области образования браунмиллеритов

Обозначения:

+ Соединения синтезированы

Вероятная область образования новых соединений

Браунмиллериты маловероятны

Значения радиусов по Шеннону [953], значения, отмеченные звёздочкой, получены интерполяцией.

Составы с А = Са

B ^{VI} ↓	R _B (Å)↓											
TI	0,885							•				
In	0,80											
Ti	0,67			-				-				
Mn	0,645	+		 				+		+		
Fe	0,645	+					+			+		
V	0,640											
Cr	0,615											
Со	0,61							-				
Ni	0,60											
Cu	0,54									+		
Al	0,535	+		-				-				
	$B^{IV} \rightarrow$	0,39	0,45*	0,46*	0,46*	0,49*	0,49	0,50*	0,52	0,47	0,62	0,75
	$R_B(\text{\AA}) \!\!\rightarrow$	Al	Ni	Со	Cr	V	Fe	Mn	Ti	Ga	In	ΤI

Таблица 3 (окончание)

$B^{VI}\!\!\downarrow$	R _B (Å)↓											
TI	0,885		-		-				-			
In	0,80										+	
Ti	0,67		-		-							
Mn	0,645					-		_		+		
Fe	0,645						+					
V	0,640											
Cr	0,615		-									
Со	0,61		-									
Ni	0,60											
Cu	0,54									+		
AI	0,535		-		•				-	•		
	$B^{IV} \rightarrow$	0,39	0,45*	0,46*	0,46*	0,49*	0,49	0,50*	0,52*	0,47	0,62	0,75
	$R_B(\text{\AA}) {\rightarrow}$	Al	Ni	Со	Cr	V	Fe	Mn	Ti	Ga	In	ΤI

Составы с А = Sr

Из табл. З видно, что число вероятных составов для синтеза новых браунмиллеритов с A = Ca, Sr порядка сотни. Новых соединений с марганцем, как наиболее востребованных, можно ожидать в 10 - 12 составах. Поскольку известны браунмиллериты с барием: $Ba_2Tl_2O_5$ и $Ba_2ln_2O_5$, то вероятен синтез и других, «соседних» по составам соединений, например Ba_2TllnO_5 .

3.1. Многослойные структуры

Рассмотренные составы соединений со структурой типа браунмиллерита являются первыми представителями ряда слоистых структур. Возможны соединения более сложных составов, содержащие в перовскитоподобном пакете несколько октаэдрических слоёв.

Прежде чем рассматривать следующие составы уточним некоторые элементы терминологии. При анализе перовскитоподобных слоистых структур (СЛПС) используется понятие «прафаза» и элементарные ячейки структур принято подразделять на пакеты и блоки [20, 21]. Понятие «прафаза» у исследователей имеет разное толкование. Мы следуем определению прафазы из энциклопедического словаря по физике твёрдого тела [19].

"Прафаза – воображаемая фаза симметричной структуры, из которой с помощью небольших смещений атомов может быть получена данная структура кристалла».

Понятие «прафаза» во многих СЛПС совпадает с реальной наиболее симметричной структурой G₀, присущей кристаллам рассматриваемых семейств.

Рис. 4. Пакеты А и часть пакетов В.

<u>Пакет</u> – это элемент слоистой структуры, унаследованный от перовскита и содержащий максимальное число слоёв анионных октаэдров или их остатков, связанных вершинами. При заполнении вакансий атомами его мысленно можно достроить до *n* слоёв структуры типа перовскита. Таких пакетов известно четыре ряда [21], два из них представлены на рис. 4.

Пакеты В отличаются от пакетов типа А наличием анионных вакансий.

<u>Блоки</u> – промежуточные слои между двумя пакетами. В ряде случаев известные блоки можно рассматривать элементами других структурных типов, а иногда, как в случае браунмиллерита, результатом вырождения перовскитной ячейки (рис. 5).

Рис. 5. Блок Т1, который можно считать результатом вырождения кубической структуры типа перовскита [20].

Поэтому прафазой структуры браунмиллерита следует считать комбинацию пакета А1 с блоком Т1 (рис. 6). И фазу с пространственной

группой *Pcmn* – прототипом структуры. Все остальные подобные фазы можно считать производными от этой структуры.

Известные нам соединения из этой серии приведены в табл. 4 и на рис. 7 и 8. Они представляют собой результат реализации пра-

T1\A1

фазы T1/B2, последнее соединение в табл. 4 представляет вариант T1/B4. А если синтезированы соединения СЛПС с пакетами B2 и B4, то новые кристаллы возможны (по меньшей мере) и с пакетами B3.

Рис. 6. Прафаза структуры типа браунмиллерита.

По строению граничных плоскостей блок Т1 согласуется с пакетами типов А и типов В. Известно несколько пакетов типа А и более десяти пакетов типа В [21] с числом перовскитоподобных слоёв от одного до шести, с разными вариантами расположения анионных вакансий. И с упаковочной позиции, при совпадении расстояний между атомами на граничных плоскостях пакетов А, В и блоков Т1 возможно образование новых структур. Исходя из общей химической формулы соединений A_{n+1}B_nB'O_{3n+2} можно представить формулы слоистых аналогов.

Таблица 4.

Представитель	Примечания	Литерат.	Простран- ственная группа	<i>a</i> , Å	b, Å	<i>c</i> , Å	Z
Ca _{2,2} La _{0,8} Cu ₂ GaO ₇	<i>n</i> = 2	[2]	Ima2	22,31	5,477	5,373	4
Sr ₂ (Y _{0,8} Ca _{0,2})Cu ₂ GaO ₇	n = 2	[26]	Ima2	22,813	5,474	5,384	4
Sr ₂ CeCu ₂ GaO ₇	n = 2	[26]	Ima2	22,968	5,5451	5,4400	4
Sr ₂ DyCu ₂ GaO ₇	n = 2	[26]	lma2	22,807	5,4865	5,4012	4
Sr ₂ ErCu ₂ GaO ₇	n = 2	[26]	Ima2	22,802	5,4701	5,3804	4
Sr ₂ EuCu ₂ GaO ₇	n = 2	[26]	Ima2	22,839	5,5188	5,4208	4
Sr ₂ GdCu ₂ GaO ₇	n = 2	[26]	lma2	22,825	5,5121	5,4167	4
Sr ₂ HoCu ₂ GaO ₇	n = 2	[26]	lma2	22,818	5,4738	5,3906	4
Sr ₂ YCu ₂ CoO ₇	n = 2	[16]	lma2	22,790	5,4515	5,4097	4
Sr ₂ LaCu ₂ GaO ₇	n = 2	[2]	lma2	23,12	5,558	5,459	4
Sr ₂ LaCu ₂ GaO ₇	n = 2	[26]	lma2	23,160	5,5706	5,4782	4
Sr ₂ NdCu ₂ GaO ₇	n = 2	[26]	lma2	22,904	5,5403	5,4403	4
Sr ₂ PrCu ₂ GaO ₇	n = 2	[26]	lma2	22,955	5,5498	5,4481	4
Sr ₂ SmCu ₂ GaO ₇	n = 2	[26]	lma2	22,850	5,5192	5,4245	4
Sr ₂ TbCu ₂ GaO ₇	n = 2	[26]	lma2	22,827	5,4975	5,4057	4
Sr ₂ TmCu ₂ GaO ₇	n = 2	[26]	Ima2	22,806	5,4911	5,4035	4
Sr ₂ YbCu ₂ GaO ₇	n = 2	[26]	lma2	22,797	5,4606	5,3759	4
Sr ₂ YCu ₂ GaO ₇	n = 2	[27]	lma2	22,8083	5,4810	5,3933	4
Sr ₂ YCu ₂ GaO ₇	n = 2	[26]	Ima2	22,815	5,4800	5,3928	4
Sr ₂ Ca ₃ Cu ₄ GaO _y ,	n = 4	[28]	lc2m	5,417	5,462	35,78	
<i>y</i> = 10,8 ÷ 11,5.							

Структуры, родственные типу браунмиллерита, с пакетами типа В

В структурах содержатся анионные вакансии, которые внесены пакетами типов В. Все соединения, представленные в табл. 4, содержат медь. Это определялось поиском новых высокотемпературных сверхпроводников и способностью меди к пятикратному кислородному окружению. Число новых соединений этого типа можно увеличить, заменив катионы в тетраэдрах структур (Ga, Co) на Al, Fe, Mn.

Рис. 7. Структура Sr₂LaCu₂GaO₇[26].

 $Sr_2YCu_2CoO_7$ (*Ima*2, *Z* = 4)

Рис. 8. Структура Sr₂LaCu₂CoO₇ [27].

Таблица 5

Координаты атомов і	вС	структурах	С	пакетами	типа	В
---------------------	----	------------	---	----------	------	---

Соединение	Sr ₂ YCu ₂ CoO ₇	Sr ₂ YCu ₂ GaO ₇	Sr ₂ LaCu ₂ GaO ₇	Sr ₂ HoCu ₂ (AlGa)O ₇
Литература	[27]	[27]	[26]	[26]
Простр. гр.	Ima2	Ima2	lma2	lma2
<i>a</i> , Å	22,7900	22,8083	23,1425	22,696
<i>b</i> , Å	5,4515	5,4810	5,5662	5,484
<i>c</i> , Å	5,4097	5,3933	5,4648	5,385
Атом	Sr (8c)	Sr (8 <i>c</i>)	(Sr/La) ₁ (8c)	Sr (8 <i>c</i>)
			g = (0,85/0,15)	
x/a	0,34827	0,34886	0,1510	0,8491
y/b	0,0061	0,0155	- 0,0141	0,0167
z/c	- 0,010	0,002	- 0,0015	0,085
Атом	Y (4a)	Y (4a)	(La/Sr) ₂ (4 <i>a</i>)	Ho (4 <i>a</i>)
<i>g</i> =			g = 0,70/0,30	g = 1,00
x/a	0	0	0	0
y/b	0	0	0	0
z/c	0	0	0	0
Атом	Cu (8c)	Cu (8c)	Cu (8 <i>c</i>)	Cu (8 <i>c</i>)
x/a	0,42710	0,42589	0,0779	0,9265
y/b	0,0011	- 0,0003	0,4992	0,5008
z/c	0,499	0,501	- 0,0035	0,997
Атом	Co (4 <i>b</i>)	Ga (4 <i>b</i>)	Ga (4 <i>b</i>)	Ga/Al (4 <i>b</i>)
				g = 0,78/0,28
x/a	1/4	1/4	1/4	1/4
y/b	0,560	0,5699	0,4285	0,5710
z/c	0	0,038	0,0370	- 0,0426
Атом	O _{1(1a)} (4 <i>b</i>)	O _{1(1a)} (4 <i>b</i>)	O ₄ (4b)	O ₄ (4b)
	g = 0,62	g = 0,87	g = 1,00	g = 1,00
x/a	1/4	1/4	1/4	1/4
y/b	0,612	0,6102	0,3752	0,872
z/c	0,397	0,396	0,3820	0,105
Атом	O _{1(1b)} (4b)	O _{1(1b)} (4b)		
	g = 0,38	g = 0,13		
x/a	1/4	1/4		
y/b	0,612	0,6102		
z/c	0,603	0,604		

Таблица 5 (окончание)

Соединение	Sr ₂ YCu ₂ CoO ₇	Sr ₂ YCu ₂ GaO ₇	Sr ₂ LaCu ₂ GaO ₇	Sr ₂ HoCu ₂ (AlGa)O ₇
Литература	[27]	[27]	[26]	[26]
Простр. гр.	Ima2	Ima2	Ima2	lma2
Атом	O ₂ (8 <i>c</i>)	O ₂ (8 <i>c</i>)	O ₁ (8c)	O ₁ (8c)
x/a	0,4346	0,4344	0,0735	0,9362
y/b	0,756	0,756	0,2478	0,762
z/c	0,249	0,250	0,2463	0,760
Атом	O ₃ (8 <i>c</i>)	O ₃ (8 <i>c</i>)	O ₂ (8 <i>c</i>)	O ₂ (8 <i>c</i>)
x/a	0,4373	0,438	0,0700	0,9366
y/b	0,252	0,247	0,7513	0,263
z/c	0,748	0,753	0,7492	0,244
Атом	O ₄ (8 <i>c</i>)	O ₄ (8 <i>c</i>)	O ₃ (8 <i>c</i>)	O ₃ (8 <i>c</i>)
x/a	0,3247	0,3232	0,1782	0,8227
y/b	0,4718	0,4569	0,5490	0,450
z/c	0,979	0,985	0,9690	0,011

4. Заключение

Результаты анализа показывают, что число кристаллов семейства браунмиллерита можно увеличить в несколько раз. Можно синтезировать порядка сотни новых однослойных соединений с A = Ca, Sr, в том числе 10 – 12 с марганцем, как наиболее востребованных и некоторых соединений с барием. Возможен синтез родственных соединений с многослойными структурами. Мы не приводим здесь перечень возможных составов многослойных структур, родственных браунмиллеритам. Но пример результатов синтеза соединений с многослойными перовскитоподобными структурами (см. [20, 21]) вселяет уверенность в том, что их можно получить большое количество. И результат в этом деле в первую очередь зависит от интереса к этим кристаллам и от желания технологов удовлетворить этот интерес. Мы старались в этом Вам помочь.

5. Список литературы

- 1. Абакумов А.М., Розова М.Г., Антипов Е.В. Сложные оксиды марганца со структурой браунмиллерита: синтез, кристаллохимия и свойства. // Успехи химии. 2004. Т. 73, № 9. С. 917–931.
- 2. **ICDD PDF-2.** Database International Centre jf Diffraction Data. Powder Diffraction File (1–47). 1997.
- Pomjakushin V.Yu., Balagurov A.M., Elzhov T.V. et al. Atomic and magnetic structures, disorder effects, and unconventional superexchange interactions in A₂MnGaO_{5+δ} (A = Sr, Ca) oxides of layered brownmillerite-type structure. // Phys. Rev. B. 2002. V. 66. P. 184412 (13).
- 4. Wight A.J., Palmer H.M., Anderson P.A., Greaves C. // J. Mater. Chem. 2002. V. 12. P. 978.
- 5. Battle P.D., Bell A.M., Blundell S.J. et al. // J. Solid State Chem., 2002. V. 167. P. 188.
- Bertaut E.F., Blum P., Sagnieres A. Structure de ferrite bialcigue et de la brownmillerite. // Acta Cryst. 1959. V. 12, № 2. P. 149–159.
- 7. ICSD/Retrieve 2.01, by Dr. Michael Berndt. 1990–97. Jun 14. 1997.
- 8. **Colville A.A., Geller S.** The crystal structure of brownmillerite , Ca₂FeAlO₅. // Acta Cryst. 1971. V. B24, № 12. P. 2311–2315.
- 9. Пирсон У.Б. Кристаллохимия и физика металлов и сплавов. 1977. пер. с англ. М.: «Мир», Часть 1. 419 с; часть 2. 471 с.
- Современная кристаллография (в четырёх томах). Том 2. Структура кристаллов. / Вайнштейн Б.К., Фридкин В.М., Инденбом В.Л. М.: «Наука». 1979.-360 с.
- Schenck R., Müller-Buschbaum Hk. Darstellung und Kristallstruktur von Ba₂Tl₂O₅. // Z. anorg. allg. Chem. 1974. Bd. 405, S. 197–201.

- Istomin S.Ya., Abdyusheva S.V., Svensson G., Antipov E.V. Sintesis, crystal and magnetic structure of a novel brownmillerite-type compound Ca₂Co_{1,6}Ga_{0,4}O₅. // J. Solid State Chem. 2004. V/ 177, № 11. P. 4251–4257.
- Arpe R., Schenck R., Müller-Buschbaum Hk. Zur 1Kentnis von Ca₂FeGaO₅, ein Deitrag zur Kristallchemie von M₂²⁺Me₂³⁺O₅-Verbindungen. // Z. anorg. allg. Chem. 1974. Bd. 410, № 2. S. 97–103.
- 14. Grenier J.C., Minel F., Pouchard M., Hagenmuller P. // C.R. hebd. Seances Acad. Sci. 1973. V. 277. P. 647.
- Krüger H., Kahlenberg V. Incommensurately modulated ordering of tetrahedral chains in Ca₂Fe₂O₅ at elevated temperatures. // Acta Cryst. 2005. V. B61, № 6. P. 656–662.
- Roth G., Adelmann P., Knitter R. et al. // J. Solid State Chem. 1992. V. 99. P. 376–387.
- Anderson M.T., Vaughey J.T., Poeppelmaier K.R. Structural similarities among oxygen-deficient perovskites. // Chem. Mater. 1993. V. 5. P. 151–165.
- Colville A.A. The crystal structure of Ca₂Fe₂O₅ and its relation to the nuclear, electronic feld gradient at the iron sites. // Acta Cryst. 1970. V. B26, № 10. P. 1469–1473.
- 19. **Физика твёрдого тела: энциклопедический словарь.** Киев. Наукова думка. Т. 2. 1998.-664 с.
- Александров К.С., Безносиков Б.В. Перовскитоподобные кристаллы. (Иерархия структур, многообразие физических свойств, возможности синтеза новых соединений). Новосибирск: Наука. Сиб. предприятие РАН. 1997.–216 с.
- Александров К.С., Безносиков Б.В. Перовскиты. Настоящее и будущее. (Многообразие прафаз, фазовые превращения, возможности синтеза новых соединений). Новосибирск. Издательство СО РАН. 2004.– 231 с.
- Redhammer G.J., Tippelt G., Roth G., Amthauer G. Structural variations in the brownmillerite series Ca₂(Fe_{2-x}Al_x)O₅. // Amer. Miner. 2004. V. 89, № 2-3. P. 405–420.
- 23. Shannon R.D. // Acta Cryst. 1976. V. A32, № 5. P. 751–767.

- Chen B.-H., Walker D., Scott B.A., Mitri D.B. Synthesis and structure of A new perovskite SrCuO_{2,5}. // J. Solid State Chem. 1996. V. 121. P. 498–501.
- 25. **Диаграммы состояния систем тугоплавких оксидов**: Справочник. Вып. 5. Двойные системы. Ч. 3. Л.: «Наука». 1987.-287 с.
- 26. Vaughey J.T., Thiel J.P., Hasty E.F. et al. Synthesis and structure of a new family of cuprate superconductors: LnSr₂Cu₂GaO₇.
 // Chem. Mater. 1991. V. 3. P. 935–940.
- Huang Q., Cava R.J., Santoro A. et al. Neutron powder diffraction study of the crystal structure of Ysr₂CoCu₂O₇ and Y_{1-x}Ca_xSr₂CoCu₂O₇. // Physica C. 1992. V. 193. P. 196–206.
- Ramirez-Castellanos J., Matsui Y., Takayama-Muromachi E., Isobe M. Structural disorders in the superconducting CaSr₂Ca₃Cu₄O_y. // J. Solid State Chem. 1996. V. 123. P. 378– 381.

Ответственный за выпуск Б.В. Безносиков

Подписано в печать 11.05.2007. Гарнитура "Arial" Уч. изд. л. 1,75. Заказ № 30. Тираж 50 экз. Отпечатано в типографии Института физики им. Л.В. Киренского СО РАН 660036. Россия. Красноярск. Академгородок. В печать разрешаю:

Зам. директора Института Физики СО РАН докт. Физ.-мат. наук А.Н. Втюрин

11 мая 2007 г.