

MBMM A.B.Kupehckoro

В. В. Тюрнев

КВАЗИСТАТИЧЕСКИЙ РАСЧЁТ СВЯЗАННЫХ МИКРОПОЛОСКОВЫХ ЛИНИЙ НА СЛОИСТОЙ ПОДЛОЖКЕ, СОДЕРЖАЩЕЙ МЕТАЛЛИЧЕСКУЮ ФЕРРОМАГНИТНУЮ ПЛЁНКУ

Препринт 844Ф Красноярск, 2007

АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ФИЗИКИ им. Л. В. КИРЕНСКОГО

Препринт № 844 Ф

КВАЗИСТАТИЧЕСКИЙ РАСЧЁТ СВЯЗАННЫХ МИКРОПОЛОСКОВЫХ ЛИНИЙ НА СЛОИСТОЙ ПОДЛОЖКЕ, СОДЕРЖАЩЕЙ МЕТАЛЛИЧЕСКУЮ ФЕРРОМАГНИТНУЮ ПЛЁНКУ

В. В. Тюрнев

УДК 621.372.8

Тюрнев В. В.

Квазистатический расчёт связанных микрополосковых линий на слоистой подложке, содержащей металлическую ферромагнитную плёнку: Препринт № 844 Ф. – Красноярск: Институт физики СО РАН, 2007. – 32 с.

Излагается метод численного расчёта электромагнитных волн СВЧ основного типа в открытой планарной многопроводной линии передачи на слоистой подложке, содержащей тонкую металлическую ферромагнитную плёнку. Получены формулы для расчёта фазовых скоростей квазипоперечных волн и отвечающих им амплитуд токов и напряжений на полосковых проводниках.

При расчёте экран и полосковые проводники линии предполагаются идеальными. Толщина полосковых проводников считается нулевой. Ферромагнитная плёнка находится в постоянном магнитном поле. Она характеризуется полем одноосной магнитной анизотропии, шириной линии ферромагнитного резонанса, намагниченностью насыщения и конечной электрической проводимостью. Анализ выполняется в квазистатическом приближении. Матрицы погонной индуктивности и ёмкости полосковых проводников получаются строгим решением двумерных граничных задач магнито- и электростатики.

Результаты работы могут быть использованы при математическом моделировании датчиков магнитного поля, а также управляемых гиромагнитных устройств СВЧ.

Tyurnev V. V.

Quasi-static Calculation of Coupled Microstrip Lines on Layered Substrate with Metal Ferromagnetic Film: Preprint No 844F. Krasnoyarsk: Institute of Physics. Russian Academy of Sciences. Siberian Branch. 2007. – 32 p.

Работа поддержена грантом НШ-6612.2006.3 Совета по грантам при Президенте Российской Федерации по программе поддержки ведущих научных школ.

Рецензент доктор физико-математических наук Н. В. Волков

© Институт физики им. Л. В. Киренского СО РАН

ВВЕДЕНИЕ

Тонкие магнитные плёнки в отличие от массивных магнитных сердечников могут находиться в однодоменном состоянии с однородной намагниченностью М по всему объёму даже при слабых внешних магнитных полях. Это связано с тем, что энергия обменного взаимодействия, противодействующая неоднородному распределению намагниченности, превосходит энергию полей размагничивания, минимизирующуюся в многодоменном состоянии. Вектор намагниченности М тонкой магнитной плёнки из магнитомягкого материала способен легко изменять своё направление в плоскости плёнки под воздействием внешних магнитных полей. В диапазоне сверхвысоких частот (СВЧ) магнитная восприимчивость тонких магнитных плёнок резко возрастает при выполнении условия ферромагнитного резонанса (ФМР). Поэтому тонкие магнитные плёнки из магнитомягкого материала находят широкое применение в различных датчиках и, прежде всего в датчиках магнитного поля, а также в управляемых устройствах СВЧ [1].

В устройствах СВЧ тонкие магнитные плёнки, являющиеся квазидвумерными объектами, удобнее всего помещать в планарные линии передачи, например, в микрополосковые линии. Вопервых, это обеспечит высокий коэффициент заполнения линии передачи магнитным материалом и эффективное взаимодействие намагниченности плёнки с электромагнитной волной. Вовторых, микрополосковая линия, являясь открытой линией передачи, не будет экранировать магнитную плёнку от воздействия внешних радиочастотных магнитных полей, что позволяет использовать такую структуру в качестве датчика магнитного поля [2—7] или магнитной антенны.

В устройствах СВЧ используются как диэлектрические ферритовые плёнки, так и металлические ферромагнитные. Магнитная добротность плёнок из магнитомягких материалов характеризуется отношением намагниченности насыщения M к ширине линии ферромагнитного резонанса ΔH . Чем больше отношение $M/\Delta H$, тем выше магнитная добротность.

Из ферритовых плёнок наибольшей магнитной добротностью обладают монокристаллические плёнки железо-иттриевого граната (ЖИГ), а из металлических ферромагнитных плёнок – поликристаллические пермаллоевые плёнки (состав Ni_{0,82}Fe_{0,18}). Монокристаллические плёнки ЖИГ выращивают на монокристаллической подложке галлий-гадолиниевого граната методом жидкофазной эпитаксии. Поэтому стоимость монокристаллических плёнок ЖИГ высока. Стоимость пермаллоевых плёнок значительно ниже, так как их получают методом вакуумного напыления.

Расчёт волн основного типа в микрополосковой линии передачи на слоистой подложке, содержащей ферритовую плёнку, описан в работах [8–10].

В настоящей работе выполняется расчёт волн основного типа в многопроводной микрополосковой линии передачи на слоистой подложке, содержащей металлическую магнитоодноосную ферромагнитную плёнку.

КОНСТРУКЦИЯ ЛИНИИ

Поперечное сечение рассматриваемой многопроводной микрополосковой линии передачи изображено на рис. 1.

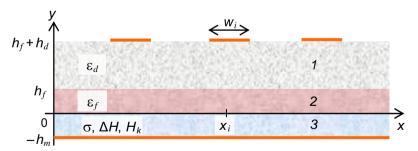


Рис. 1. Поперечное сечение линии передачи 1 – диэлектрическая пластина, 2 – диэлектрическая плёнка, 3 – магнитная плёнка

Подложка линии состоит из трёх слоев. Верхний диэлектрический слой (1) является самым толстым. Это — пластина, выполненная из высокочастотной керамики, например, поликора. Ниже

располагается диэлектрическая прослойка (2), отделяющая керамическую пластину (1) от металлической ферромагнитной плёнки (3). Диэлектрическая прослойка (2) используется для сужения ширины линии ФМР в магнитной плёнке (3).

Под слоистой подложкой располагается плоский металлический экран линии передачи. Сверху на свободной поверхности подложки лежат параллельные полосковые проводники. Количество полосковых проводников n, их ширина w_i и координата x_i ($i=1,2,3,\ldots n$) могут быть произвольными. Все полосковые проводники и металлический экран предполагаются идеальными. Толщина полосковых проводников предполагается нулевой.

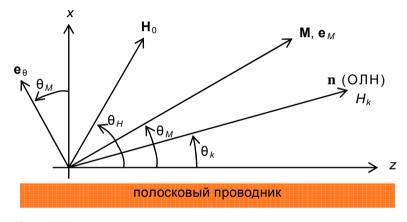


Рис. 2. Направления полей и намагниченности в плоскости плёнки ${\bf H}_0$ – внешнее поле, ${\bf M}$ – равновесная намагниченность, H_k – поле анизотропии, ${\bf n}$ – вектор ОЛН

Металлическая ферромагнитная плёнка имеет конечную проводимость σ . В случае пермаллоевой плёнки её проводимость σ = 2,5·10⁶ Ом⁻¹·м⁻¹ [11]. Магнитные потери в ферромагнитной плёнке будем характеризовать шириной линии ФМР ΔH на частоте F_1 = 1 ГГц для случая, когда СВЧ магнитное поле параллельно плоскости плёнки и перпендикулярно равновесному вектору намагниченности **М**.

Ферромагнитная плёнка обладает одноосной наведённой магнитной анизотропией, характеризуемой полем H_k и единичным вектором \mathbf{n} направления оси лёгкого намагничивания (ОЛН). Эта ось лежит в плоскости плёнки под углом θ_k к полосковым проводникам линии передачи, как показано на рис. 2.

Предполагается, что внешнее постоянное магнитное поле \mathbf{H}_0 параллельно плоскости плёнки и направлено под углом θ_H к полосковым проводникам. Равновесная намагниченность плёнки \mathbf{M} под воздействием внешнего магнитного поля и поля одноосной магнитной анизотропии ориентируется в плоскости плёнки под углом θ_M к полосковым проводникам. Реальное же наличие нормальной к поверхности плёнки составляющей внешнего магнитного поля при большой намагниченности насыщения (у пермаллоя $4\pi M \approx 10000$ Гс) и малой величине внешнего поля ($H_0 < 10$ Э), может привести лишь к незначительному отклонение вектора равновесной намагниченности из плоскости пленки и ничтожному изменению угла θ_M , а, следовательно, и компонентов тензора магнитной проницаемости на СВЧ.

ТЕНЗОР МАГНИТНОЙ ПРОНИЦАЕМОСТИ

Рассчитаем тензор магнитной проницаемости ферромагнитной плёнки во внешнем постоянном магнитном поле \mathbf{H}_0 для слабого внутреннего СВЧ поля \mathbf{H} при наличии одноосной магнитной анизотропии. Расчёт будем выполнять в гауссовой системе единиц, как принято в физике магнитных явлений [12]. Плотность энергии рассматриваемой магнитной плёнки выражается формулой

$$W = -\mathbf{M}(\mathbf{H}_0 + \mathbf{H}) - \frac{1}{2} \frac{H_k}{M} (\mathbf{M} \mathbf{n})^2 + 2\pi M_y^2, \qquad (1)$$

где первое слагаемое есть энергия магнитных моментов в магнитном поле (зеемановская энергия), второе слагаемое — энергия одноосной магнитной анизотропии, третье слагаемое — энергия постоянного размагничивающего поля, препятствующая отклонению равновесной намагниченности из плоскости плёнки. Энерги-

ей обменного взаимодействия пренебрегаем, так как длина неоднородностей СВЧ магнитного поля, обусловленных структурой поперечного сечения линии передачи, много больше радиуса обменного взаимодействия.

Движение вектора намагниченности **М** описывают уравнением Ландау-Лифшица

$$\frac{\partial}{\partial t}\mathbf{M} = -\gamma \mathbf{M} \times \mathbf{H}^{eff} + \frac{\alpha}{M} \mathbf{M} \times \frac{\partial}{\partial t} \mathbf{M}, \qquad (2)$$

где γ – магнитомеханическое отношение, H^{eff} – эффективное магнитное поле, α – безразмерный параметр, описывающий затухание. Второе слагаемое в (2) называют диссипативным членом в форме Гильберта. В случае, когда намагниченность имеет чисто спиновую природу (g_s = 2), магнитомеханическое отношение γ = 1,7608·10 7 c $^{-1}$ ·Э $^{-1}$. Эффективное магнитное поле определяется формулой

$$\mathbf{H}^{eff} = -\frac{\delta}{\delta \mathbf{M}} W. \tag{3}$$

В формуле (3) функциональная производная в отсутствие обменной энергии в (1) вырождается в частную производную.

Подставляя (1) в (3) и вычисляя производную, находим эффективное поле

$$\mathbf{H}^{eff} = \mathbf{H}_0 + \mathbf{H} + \frac{H_k}{M} (\mathbf{M} \mathbf{n}) \mathbf{n}$$
 (4)

для случая, когда внешнее поле \mathbf{H}_0 параллельно плоскости плёнки и равновесная перпендикулярная составляющая намагниченности M_v = 0.

Из уравнения (2) видно, что равновесная намагниченность плёнки параллельна постоянной составляющей эффективного поля \mathbf{H}^{eff} . Отсюда, используя (4), получаем уравнение для угла равновесного направления намагниченности в плоскости плёнки

$$tg\theta_{M} = \frac{H_{0}\sin\theta_{H} + H_{k}\cos(\theta_{M} - \theta_{k})\sin\theta_{k}}{H_{0}\cos\theta_{H} + H_{k}\cos(\theta_{M} - \theta_{k})\cos\theta_{k}}.$$
 (5)

Уравнение равновесия, записанное в форме (5), легко решается численно итерационным методом, который всегда быстро сходится.

Для нахождения СВЧ магнитной восприимчивости решается линеаризованное уравнение (2), в котором сохранены только линейные члены по СВЧ составляющим вектора намагниченности \mathbf{M} и внутреннего магнитного поля \mathbf{H} , изменяющиеся во времени по закону $\exp(-i\omega t)$, и отброшены все квадратичные члены [1, 12]. Расчёт удобнее выполнять в системе координат с ортами \mathbf{e}_{M} , \mathbf{e}_{y} , связанной с равновесным направлением намагниченности \mathbf{M} (рис. 2). В этой системе координат тензор относительной магнитной проницаемости имеет вид

$$\hat{\mu}_{r} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \mu_{\theta\theta} & \mu_{\thetay} \\ 0 & \mu_{y\theta} & \mu_{yy} \end{bmatrix}, \tag{6}$$

где

$$\mu_{\theta\theta} = \frac{\Omega_{2}(\Omega_{1} + \Omega_{M}) - \omega^{2}}{\Omega_{1}\Omega_{2} - \omega^{2}}, \quad \mu_{\theta y} = \frac{-i\omega\Omega_{M}}{\Omega_{1}\Omega_{2} - \omega^{2}},$$

$$\mu_{y\theta} = \frac{i\omega\Omega_{M}}{\Omega_{1}\Omega_{2} - \omega^{2}}, \qquad \mu_{yy} = \frac{\Omega_{2}(\Omega_{2} + \Omega_{M}) - \omega^{2}}{\Omega_{1}\Omega_{2} - \omega^{2}}.$$
(7)

В формулах (7) использованы обозначения

$$\Omega_{1} = \gamma [H_{0} \cos(\theta_{H} - \theta_{M}) + H_{k} \cos 2(\theta_{k} - \theta_{M})] - i\alpha \omega,
\Omega_{2} = \gamma [H_{0} \cos(\theta_{H} - \theta_{M}) + H_{k} \cos^{2}(\theta_{k} - \theta_{M})] - i\alpha \omega.$$
(8)
$$\Omega_{M} = \gamma 4\pi M.$$

ПОТОК ИНДУКЦИИ МАГНИТНОГО ПОЛЯ

Далее весь расчёт будем выполнять в системе единиц СИ. Погонный поток Ψ_i индукции магнитного поля $\mathbf{B}(x,y)$, пронизывающий участок площади продольного сечения связанных микропо-

лосковых линий между i-м проводником и экраном, выражается формулой

$$\Psi_i = \iint \mathbf{B} \, d\mathbf{s}_i \ . \tag{9}$$

Векторный потенциал магнитного поля $\mathbf{A}(x,y)$ определим формулами

$$\mathbf{B} = \operatorname{rot} \mathbf{A}, \ \operatorname{div} \mathbf{A} = 0 \tag{10}$$

с граничными условиями

$$\lim_{x,y\to\pm\infty} \mathbf{A}(x, y) = 0. \tag{11}$$

Так как на поверхности проводника нормальная составляющая индукции $B_y(x)$ обращается в нуль, то из (10) следует, что потенциал $\mathbf{A}(x,y)$ = const в пределах поверхности проводника. Причём потенциал безграничного экранирующего проводника должен согласно (11) обращаться в нуль.

Подставляя (10) в (9), получаем

$$\Psi_i = \iint \operatorname{rot} \mathbf{A} \ d\mathbf{s}_i \ . \tag{12}$$

Используя теорему Стокса и учитывая обращение в нуль потенциала $\mathbf{A}(x,y)$ на поверхности экрана и отсутствие зависимости от z, находим

$$\Psi_i = A_i, \tag{13}$$

где A_i — z-составляющая векторного потенциала на поверхности i-го проводника.

ВЕКТОРНЫЙ ПОТЕНЦИАЛ МАГНИТНОГО ПОЛЯ

Рассчитаем в квазистатическом приближении векторный потенциал магнитного поля $\mathbf{A}(x,y)$ вне области металлической ферромагнитной плёнки. Для этого запишем уравнения Максвелла

$$rot \mathbf{H} = \partial \mathbf{D} / \partial t + \mathbf{j}, \tag{14}$$

$$rot \mathbf{E} = -\partial \mathbf{B}/\partial t, \tag{15}$$

где $\mathbf{H} = \mathbf{B}/\mu_0$ — вектор напряжённости магнитного поля, а \mathbf{j} — объёмная плотность токов проводимости, связанная с поверхностными токами на полосковых проводниках $\mathbf{J}_i(\mathbf{x})$ формулой

$$\mathbf{j} = \sum_{i=1}^{n} \mathbf{J}_{i}(x) \,\delta(y - h_{f} - h_{d}). \tag{16}$$

Подставляя первое равенство формулы (10) в уравнение (14) и пренебрегая ничтожно малыми токами смещения $\partial \mathbf{D}/\partial t$ по сравнению с токами проводимости \mathbf{j} , получаем уравнение магнитостатики для векторного потенциала

$$rot \, rot \, \mathbf{A} = \mu_0 \, \mathbf{j} \,. \tag{17}$$

С учётом второго равенства формулы (10), уравнение (17) принимает вид уравнения Пуассона

$$\left[\partial^2 / \partial x^2 + \partial^2 / \partial y^2 \right] \mathbf{A} = -\mu_0 \mathbf{j}. \tag{18}$$

В квазистатическом приближении поверхностные токи $\mathbf{J}_i(x)$ на полосковых проводниках не имеют поперечных составляющих. Поэтому согласно (18), (16) единственной ненулевой составляющей векторного потенциала магнитного поля вне ферромагнитной плёнки (y>0) является $A_z(x,y)$.

Найдём потенциал $A_z(x, y)$ в области y > 0. Для этого выполним преобразования Фурье

$$\overline{A}(\beta, y) = \int_{-\infty}^{\infty} A_z(x, y) e^{i\beta x} dx, \qquad (19)$$

$$\overline{J}_{i}(\beta) = \int_{-\infty}^{\infty} J_{i}(x) e^{i\beta x} dx.$$
 (20)

Тогда уравнение (18) принимает вид обыкновенного дифференциального уравнения

$$\left[\partial^2 / \partial y^2 - \beta^2 \right] \overline{A}(\beta, y) = 0.$$
 (21)

Получим граничные условия для Фурье-трансформанты $\overline{A}(\beta,y)$. На границе раздела слоёв на высоте y_i = h_f + h_d должны выполняться условия

$$H_{x}(x,y)\big|_{y=y_{i}=0} = H_{x}(x,y)\big|_{y=y_{i}+0} + \sum_{k=1}^{n} J_{k}(x),$$

$$B_{y}(x,y)\big|_{y=y_{i}=0} = B_{y}(x,y)\big|_{y=y_{i}+0},$$

$$H_{z}(x,y)\big|_{y=y_{i}=0} = H_{z}(x,y)\big|_{y=y_{i}+0}.$$
(22)

Отсюда, используя (10), получаем граничные условия для Фурье-трансформанты векторного потенциала

$$\frac{\partial}{\partial y} \overline{A}(\beta, y) \Big|_{y=y_i-0} = \frac{\partial}{\partial y} \overline{A}(\beta, y) \Big|_{y=y_i+0} + \mu_0 \sum_{k=1}^n \overline{J}_k(\beta),$$

$$\overline{A}(\beta, y) \Big|_{y=y_i-0} = \overline{A}(\beta, y) \Big|_{y=y_i+0}.$$
(23)

В верхней полуплоскости вдали от полосковых проводников граничное условие имеет вид

$$\left. \overline{A}(\beta, y) \right|_{y=\infty} = 0. \tag{24}$$

Общее решение уравнения (21), удовлетворяющее только граничным условиям (23), (24), имеет вид

$$\begin{split} & \overline{A}(\beta, y) = \\ & = \begin{cases} A_{1}(\beta) e^{-|\beta|(y - h_{f} - h_{d})} & \text{при } y > h_{f} + h_{d}, \\ A_{1}(\beta) e^{-|\beta|(y - h_{f} - h_{d})} + & \\ + \frac{\mu_{0}}{|\beta|} sh(|\beta|(y - h_{f} - h_{d})) \sum_{k=1}^{n} \overline{J}_{k}(\beta) & \text{при } 0 < y < h_{f} + h_{d}. \end{cases} \end{split}$$

На поверхности ферромагнитной плёнки $(y_i = 0)$ граничные условия (22) для Фурье-трансформанты принимают вид

$$\frac{\partial}{\partial y} \overline{A}(\beta, y) \Big|_{y=y_i=0} = \mu_0 \overline{H}_x(\beta, y) \Big|_{y=y_i+0},$$

$$\overline{A}(\beta, y) \Big|_{y=y_i=0} = i \beta^{-1} \overline{B}_y(\beta, y) \Big|_{y=y_i+0},$$

$$0 = \mu_0 \overline{H}_z(\beta, y) \Big|_{y=y_i+0},$$
(26)

где $\overline{H}_{x}(\beta,y)$, $\overline{B}_{y}(\beta,y)$, $\overline{H}_{z}(\beta,y)$ — Фурье-трансформанты напряжённости и индукции магнитного поля в ферромагнитной плёнке.

Таким образом, для нахождения неопределённого коэффициента A_1 в формуле (25) с помощью граничных условий (26) требуется сначала рассчитать Фурье-трансформанты магнитного поля в ферромагнитной плёнке.

КВАЗИСТАТИЧЕСКИЕ КОЛЕБАНИЯ В МЕТАЛЛИЧЕСКОЙ ФЕРРОМАГНИТНОЙ ПЛЁНКЕ

Рассчитаем однородные вдоль оси z квазистатические колебания в плёнке, при которых все колеблющиеся величины изменяются во времени по закону $\exp(-i\omega t)$. Запишем уравнения Максвелла для этого случая

$$rot \mathbf{E}(x,y) = i \omega \mathbf{B}(x,y), \tag{27}$$

$$rot \mathbf{H}(x, y) = -i \omega \mathbf{D}(x, y) + \mathbf{j}(x, y), \tag{28}$$

где

$$\mathbf{j}(x,y) = \sigma \mathbf{E}(x,y). \tag{29}$$

Исключая поле **E** в системе уравнений (27)–(29) и пренебрегая токами смещения $\partial \mathbf{D}/\partial t$ по сравнению с токами проводимости **j**, получаем дифференциальное уравнение второго порядка для магнитного поля

$$rot rot \mathbf{H} = i \omega \sigma \mathbf{B}. \tag{30}$$

Вычисляя роторы, получаем

$$\frac{\partial^{2}}{\partial x \partial y} H_{y} - \frac{\partial^{2}}{\partial y^{2}} H_{x} = i \omega \sigma B_{x},$$

$$\frac{\partial^{2}}{\partial x \partial y} H_{x} - \frac{\partial^{2}}{\partial x^{2}} H_{y} = i \omega \sigma B_{y},$$

$$-\frac{\partial^{2}}{\partial x^{2}} H_{z} - \frac{\partial^{2}}{\partial y^{2}} H_{z} = i \omega \sigma B_{z}.$$
(31)

Пренебрегая производными $\partial/\partial x$ по сравнению с производными $\partial/\partial y$, отличающимися большой величиной из-за сильного затухания СВЧ мощности в электропроводящей среде, получаем

$$\frac{\partial^{2}}{\partial y^{2}} H_{x} + i \omega \sigma B_{x} = 0,$$

$$-\frac{\partial^{2}}{\partial x \partial y} H_{x} + i \omega \sigma B_{y} = 0,$$

$$\frac{\partial^{2}}{\partial y^{2}} H_{z} + i \omega \sigma B_{z} = 0.$$
(32)

Выполняя преобразование Фурье

$$\overline{\mathbf{H}}(\beta, y) = \int_{-\infty}^{\infty} \mathbf{H}(x, y) e^{i \beta x} dx, \qquad \overline{\mathbf{B}}(\beta, y) = \int_{-\infty}^{\infty} \mathbf{B}(x, y) e^{i \beta x} dx, \qquad (33)$$

систему уравнений (32) приводим к виду

$$\frac{\partial^{2}}{\partial y^{2}} \overline{H}_{x}(\beta, y) + i \omega \sigma \overline{B}_{x}(\beta, y) = 0,$$

$$-i \beta \frac{\partial}{\partial y} \overline{H}_{x}(\beta, y) + i \omega \sigma \overline{B}_{y}(\beta, y) = 0,$$

$$\frac{\partial^{2}}{\partial y^{2}} \overline{H}_{z}(\beta, y) + i \omega \sigma \overline{B}_{z}(\beta, y) = 0.$$
(34)

По формулам

$$H_{x} = H_{\theta} \cos \theta_{M} + H_{M} \sin \theta_{M},$$

$$H_{z} = -H_{\theta} \sin \theta_{M} + H_{M} \cos \theta_{M}$$
(35)

перейдем к компонентам магнитного поля в системе координат, связанной с равновесной намагниченностью. Подставляя (35) в (34), получаем

$$\frac{\partial^{2}}{\partial y^{2}} \overline{H}_{M}(\beta, y) + i \omega \sigma \overline{B}_{M}(\beta, y) = 0,$$

$$\frac{\partial^{2}}{\partial y^{2}} \overline{H}_{\theta}(\beta, y) + i \omega \sigma \overline{B}_{\theta}(\beta, y) = 0, \quad (36)$$

$$\beta \frac{\partial}{\partial y} \left[\overline{H}_{\theta}(\beta, y) \cos \theta_M + \overline{H}_M(\beta, y) \sin \theta_M \right] - \omega \sigma \overline{B}_y(\beta, y) = 0.$$

Выражая индукцию f B через напряжённость f H магнитного поля, получаем

$$\left[\frac{\partial^{2}}{\partial y^{2}} + k_{\parallel}^{2}\right] \overline{H}_{M}(\beta, y) = 0,$$

$$\left[\frac{\partial^{2}}{\partial y^{2}} + k_{\parallel}^{2} \mu_{\theta\theta}\right] \overline{H}_{\theta}(\beta, y) + k_{\parallel}^{2} \mu_{\theta y} \overline{H}_{y}(\beta, y) = 0,$$

$$\beta \sin \theta_{M} \frac{\partial}{\partial y} \overline{H}_{M}(\beta, y) + \left[\beta \cos \theta_{M} \frac{\partial}{\partial y} + i k_{\parallel}^{2} \mu_{y\theta}\right] \overline{H}_{\theta}(\beta, y) + i k_{\parallel}^{2} \mu_{yy} \overline{H}_{y}(\beta, y) = 0,$$

где

$$\mathbf{k}_{\parallel} = \sqrt{i \, \omega \, \sigma \, \mu_{\,0}} \, . \tag{38}$$

Система (37) имеет два решения, удовлетворяющие граничному условию на поверхности идеально проводящего экрана

$$\overline{B}_{y}(\beta, y)\Big|_{y=-h_{m}} = 0.$$
(39)

Эти решения отличаются поляризацией. Первое решение имеет вид

$$\overline{H}_{x}(\beta, y) = \frac{\sin \theta_{M} \cos \left(k_{\parallel}(y + h_{m})\right)}{\cos \left(k_{\parallel}h_{m}\right)} C_{\parallel},$$

$$\overline{B}_{y}(\beta, y) = -i \mu_{0} \frac{\beta \sin \theta_{M} \sin \left(k_{\parallel}(y + h_{m})\right)}{k_{\parallel} \cos \left(k_{\parallel}h_{m}\right)} C_{\parallel},$$

$$\overline{H}_{z}(\beta, y) = \frac{\cos \theta_{M} \cos \left(k_{\parallel}(y + h_{m})\right)}{\cos \left(k_{\parallel}h_{m}\right)} C_{\parallel}.$$
(40)

Оно отвечает поляризации, при которой намагниченность ферромагнитной плёнки не участвует в колебаниях.

Второе решение имеет вид

$$\overline{H}_{x}(\beta, y) = \frac{\cos \theta_{M} \cos \left(k_{\perp}(y + h_{m})\right)}{\cos \left(k_{\perp}h_{m}\right)} C_{\perp},$$

$$\overline{B}_{y}(\beta, y) = -i \frac{\mu_{0} \mu_{\perp} \beta}{k_{\perp}} \frac{\cos \theta_{M} \sin \left(k_{\perp}(y + h_{m})\right)}{\cos \left(k_{\perp}h_{m}\right)} C_{\perp},$$

$$\overline{H}_{z}(\beta, y) = -\frac{\sin \theta_{M} \cos \left(k_{\perp}(y + h_{m})\right)}{\cos \left(k_{\perp}h_{m}\right)} C_{\perp},$$
(41)

где

$$\mu_{\perp} = \mu_{\theta\theta} + \mu_{\theta y}^2 / \mu_{yy}, \qquad (42)$$

$$\mathbf{k}_{\perp} = \mathbf{k}_{\parallel} \sqrt{\mu_{\perp}} \ . \tag{43}$$

Из формулы (41) видим, что затухание колебаний вглубь ферромагнитной плёнки, обусловленное магнитными потерями, определяется эффективной магнитной проницаемостью μ_{\perp} . Согласно (7) имеем

$$\mu_{\perp} = \frac{(\Omega_1 + \Omega_M)(\Omega_2 + \Omega_M) - \omega^2}{\Omega_1(\Omega_2 + \Omega_M) - \omega^2}.$$
 (44)

Мнимая часть μ_{\perp} максимальна на частоте ферромагнитного резонанса, когда знаменатель формулы (44) становится чисто мнимой величиной.

Установим связь параметра затухания α в формулах (8) с шириной линии ферромагнитного резонанса ΔH . Для этого рассмотрим частный случай, когда

$$\theta_H = \theta_k = \theta_M = 0. \tag{45}$$

Тогда формула (44) принимает вид

$$\mu_{\perp} = \frac{\left(\gamma \left[H_0 + H_k + 4\pi M\right] - i\alpha\omega\right)^2 - \omega^2}{\left(\gamma \left[H_0 + H_k\right] - i\alpha\omega\right)\left(\gamma \left[H_0 + H_k + 4\pi M\right] - i\alpha\omega\right) - \omega^2}.(46)$$

Отсюда частота ФМР

$$\omega_{\Phi MP} = \gamma \sqrt{(H_0 + H_k)(H_0 + H_k + 4\pi M)}$$
(47)

Пусть H_0 таково, что $\omega_{\Phi MP} = \omega_1$, где ω_1 отвечает, например, циклической частоте 1 ГГц. Тогда из (46) находим

$$\alpha = \frac{\gamma \Delta H}{2\omega_1},\tag{48}$$

где ΔH – ширина линии ФМР по уровню ½ от $\mu_{\perp\,\text{max}}''$ на частоте ω_1 при $\theta_H=\theta_k=0$.

Суммируя решения (40) и (41), получаем

$$\begin{split} \bar{H}_{x}(\beta,y) &= \frac{\sin\theta_{M}\cos\left(k_{\parallel}(y+h_{m})\right)}{\cos\left(k_{\parallel}h_{m}\right)}C_{\parallel} + \\ &+ \frac{\cos\theta_{M}\cos\left(k_{\perp}(y+h_{m})\right)}{\cos\left(k_{\perp}h_{m}\right)}C_{\perp}, \\ \bar{B}_{y}(\beta,y) &= -i\mu_{0}\beta \frac{\sin\theta_{M}\sin\left(k_{\parallel}(y+h_{m})\right)}{k_{\parallel}\cos\left(k_{\parallel}h_{m}\right)}C_{\parallel} - \\ &- i\mu_{0}\beta \frac{\mu_{\perp}}{k_{\perp}} \frac{\cos\theta_{M}\sin\left(k_{\perp}(y+h_{m})\right)}{\cos\left(k_{\perp}h_{m}\right)}C_{\perp}, \\ \bar{H}_{z}(\beta,y) &= \frac{\cos\theta_{M}\cos\left(k_{\parallel}(y+h_{m})\right)}{\cos\left(k_{\parallel}h_{m}\right)}C_{\parallel} - \\ &- \frac{\sin\theta_{M}\cos\left(k_{\perp}(y+h_{m})\right)}{\cos\left(k_{\perp}h_{m}\right)}C_{\perp}. \end{split}$$

$$(49)$$

Подставляя выражения (25) и (49) в граничные условия (26), находим Фурье-трансформанту векторного потенциала магнитного поля на уровне полосковых проводников

$$\overline{A}(\beta, y)\Big|_{y=h_f + h_d} = \frac{\left|\beta\right|^{-1} \operatorname{sh}\left(\left|\beta\right|(h_f + h_d)\right) + C_m \operatorname{ch}\left(\left|\beta\right|(h_f + h_d)\right)}{\left[1 + C_m |\beta|\right] \exp\left(\left|\beta\right|(h_f + h_d)\right)} \times \mu_0 \sum_{k=1}^n \overline{J}_k(\beta),$$
(50)

где

$$C_m = \frac{\operatorname{tg}(k_{\parallel} h_m)}{k_{\parallel}} \sin^2 \theta_M + \frac{\mu_{\perp} \operatorname{tg}(k_{\perp} h_m)}{k_{\perp}} \cos^2 \theta_M.$$
 (51)

Это единственный комплексный коэффициент, который полностью описывает влияние металлической ферромагнитной плёнки на распространение квазипоперечных волн в многопроводной линии передачи.

БЕЗРАЗМЕРНАЯ МАТРИЦА ПОГОННОЙ ИНДУКТИВНОСТИ

Вычислим поток индукции магнитного поля Ψ_i на i-м полосковом проводнике. Для этого формулу (13) представим в виде

$$\Psi_i I_i = A_i \int_{-\infty}^{\infty} J_i(x) dx.$$
 (52)

Внося константу A_i под знак интеграла, и учитывая, что она равна функции $A_z(x,y)$ при $y=h_f+h_d$, получаем

$$\Psi_i I_i = \int_{-\infty}^{\infty} A_z(x, y) \Big|_{y = h_f + h_d} J_i(x) dx.$$
 (53)

Подставляя в (53) Фурье-трансформанту (20), получаем

$$\Psi_{i} I_{i} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{A}(\beta, y) \Big|_{y = h_{f} + h_{d}} \overline{J}_{i}^{*}(\beta) d\beta.$$
 (54)

Формула (54) после подстановки в неё выражения (50) принимает вид

$$\Psi_{i}I_{i} = \frac{\mu_{0}}{2\pi} \int_{-\infty}^{\infty} \frac{\left|\beta\right|^{-1} \operatorname{sh}\left(\left|\beta\right|(h_{f} + h_{d})\right) + C_{m} \operatorname{ch}\left(\left|\beta\right|(h_{f} + h_{d})\right)}{\left[1 + C_{m}\left|\beta\right|\right] \exp\left(\left|\beta\right|(h_{f} + h_{d})\right)} \times \overline{J}_{i}^{*}(\beta) \sum_{k=1}^{n} \overline{J}_{k}(\beta) d\beta.$$
(55)

Поверхностную плотность токов на полосковом проводнике будем искать в виде ряда

$$J_{i}(x) = \frac{2}{\pi w_{i} \sqrt{1 - u_{i}^{2}}} \sum_{m=0}^{\infty} A_{im} T_{m}(u_{i}), \qquad (56)$$

где $T_m(x)$ – многочлен Чебышева первого рода степени m. Коэффициенты A_{im} – вещественные функции x, постоянные на участке $x_i - w_i/2 < x < x_i + w_i/2$ и равные нулю в остальной части. Переменная u_i задана формулой

$$u_{i} = 2(x - x_{i})/w_{i}. (57)$$

Общий множитель перед знаком суммирования в (56) записан из требования, чтобы каждый член ряда удовлетворял условию Мейкснера на ребре [13]. Первый коэффициент разложения должен быть $A_{i0} = I_i$, где I_i – интегральный ток на i-м полосковом проводнике. Это значение вытекает из условия

$$I_i = \int_{x = -\infty}^{\infty} J_i(x) \, dx \,. \tag{58}$$

Подставляя (56) в (20), получаем Фурье-трансформанту тока

$$\overline{J}_{i}(\beta) = e^{i\beta x_{i}} \sum_{m=0}^{\infty} i^{m} A_{im} J_{m}(\beta w_{i}/2), \qquad (59)$$

где использовано интегральное представление для функции Бесселя первого рода порядка m

$$J_m(x) = \frac{1}{\pi i^m} \int_{\varphi=0}^{\pi} e^{ix\cos\varphi} \cos(m\varphi) d\varphi.$$
 (60)

Подставляя (59) в (55) и используя чётность функции Бесселя

$$J_{m}(-x) = (-1)^{m} J_{m}(x), (61)$$

получаем

$$\Psi_{i} I_{i} = \frac{\mu_{0}}{\pi} \sum_{k=1}^{n} \sum_{m=0}^{\infty} A_{im} A_{kl} W_{imkl}, \qquad (62)$$

где

$$W_{imkl} = \int_{0}^{\infty} \psi(\beta) J_{m}(\beta W_{i}/2) J_{l}(\beta W_{k}/2) \times \cos(\beta (x_{i}-x_{k}) + \pi (m-l)/2) d\beta,$$
(63)

$$\psi(\beta) = \frac{\left|\beta\right|^{-1} \operatorname{sh}\left(\left|\beta\right|(h_f + h_d)\right) + C_m \operatorname{ch}\left(\left|\beta\right|(h_f + h_d)\right)}{\left(1 + C_m \left|\beta\right|\right) \exp\left(\left|\beta\right|(h_f + h_d)\right)}.$$
 (64)

Матричные элементы L_{ik} безразмерной комплексной погонной индуктивности полосковых проводников, учитывающей омические

и магнитные потери в металлической ферромагнитной плёнке, определим формулой

$$\Psi_i = \mu_0 \sum_{k=1}^n L_{ik} I_k \ . \tag{65}$$

Подставляя определение (65) в равенство (62), получаем

$$\sum_{k=1}^{n} L_{ik} I_{k} = \frac{1}{\pi I_{i}} \sum_{k=1}^{n} \sum_{l,m=0}^{\infty} A_{im} A_{kl} W_{imkl} .$$
 (66)

Заметим, что неопределённые коэффициенты A_{im} в формуле (66) являются функциями вещественных токов I_k . Их значения найдём из условия минимума энергии магнитного поля W_m при заданных токах на проводниках I_k . Эта энергия является положительно определённой квадратичной формой от токов

$$W_{m} = \frac{1}{2} \mu_{0} \sum_{i,k=1}^{n} (\text{Re} L_{ik}) I_{i} I_{k}.$$
 (67)

Используя определение (65), энергию (67) перепишем в виде

$$W_m = \frac{1}{2} \text{Re} \sum_{i=1}^{n} \Psi_i I_i . \tag{68}$$

Подставляя в (68) выражение (62), получаем

$$W_{m} = \frac{\mu_{0}}{2\pi} \sum_{i,k=1}^{n} \sum_{l,m=0}^{\infty} A_{im} A_{kl} \operatorname{Re} w_{imkl}.$$
 (69)

Для минимизации энергии W_m продифференцируем выражение (69) по искомым коэффициентам A_{kl} для $k=1,2,3,\ldots n$, и $l=1,2,3,\ldots$ и приравняем нулю. Получаем алгебраическую систему неоднородных линейных уравнений

$$\sum_{i=1}^{n} \sum_{m=1}^{\infty} A_{im} \operatorname{Re} w_{imkl} = -\sum_{i=1}^{n} I_{i} \operatorname{Re} w_{i0kl}$$
 (70)

для расчёта коэффициентов разложения A_{kl} по заданным токам I_k на полосковых проводниках.

Система уравнений (70) для заданных значений токов I_i может быть решена численно, если в формуле (56) при суммировании по m ограничиться конечным числом слагаемых. На практике, когда ширина полосковых проводников w_i порядка толщины подложки или меньше, многочленами $T_m(u_i)$ степени m>2 в формуле (56) можно пренебречь.

Расчёт элементов погонной матрицы индуктивности начнём с диагональных элементов. Для этого выделим i-й полосковый проводник и рассмотрим случай, когда все токи I_k на полосковых проводниках равны нулю, кроме одного тока I_i на i-м проводнике. Тогда формула (66) примет вид

$$L_{ii} = \frac{1}{\pi I_i^2} \sum_{k=1}^n \sum_{l,m=0}^\infty A_{im}(I_i) A_{kl}(I_i) w_{imkl}.$$
 (71)

Здесь и ниже в списке аргументов функций A_{im} перечисляются отличные от нуля токи.

Для расчёта недиагонального элемента L_{ij} рассмотрим случай, когда все токи I_k равны нулю кроме двух токов I_i и I_j на i-м и j-м проводниках. Тогда из формулы (68) находим

$$L_{ij} = \frac{1}{\pi I_i} I_j \sum_{k=1}^n \sum_{l,m=0}^\infty A_{im} (I_i, I_j) A_{kl} (I_i, I_j) w_{imkl} - L_{ii} I_i / I_j \quad (72)$$

Таким образом, формулы (51), (63)–(64), (70)–(72) позволяют рассчитать все комплексные элементы безразмерной матрицы погонной индуктивности полосковых проводников связанных микрополосковых линий.

ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Вычислим потенциал электрического поля, создаваемого электрическими зарядами на полосковых проводниках связанных микрополосковых линий. Внутри металлической ферромагнитной плёнки электрическое поле в квазистатическом приближении отсутствует. Поэтому решение будем искать только для y > 0. Най-

дём вещественную функцию $\Phi(x, y)$, удовлетворяющую двумерному уравнению Пуассона

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] \Phi(x, y) = \frac{-1}{\varepsilon_0 \varepsilon_r(y)} \rho(x, y), \tag{73}$$

где объёмная плотность зарядов $\rho(x,y)$ связана с поверхностной (суммарной по обеим поверхностям) плотностью зарядов $\rho_{v,i}(x)$ на i-м полосковом проводнике формулой

$$\rho(x,y) = \sum_{i=1}^{n} \rho_{si}(x) \,\delta(y - h_f - h_d). \tag{74}$$

Выполним преобразования Фурье

$$\overline{\Phi}(\beta, y) = \int_{-\infty}^{\infty} \Phi(x, y) e^{i\beta x} dx, \qquad (75)$$

$$\overline{\rho}_{si}(\beta) = \int_{-\infty}^{\infty} \rho_{si}(x) e^{i\beta x} dx.$$
 (76)

Тогда уравнение (73) для Фурье-трансформанты потенциала $\bar{\Phi}(\beta,y)$ вне полосковых проводников принимает вид

$$\left(\partial^2/\partial y^2 - \beta^2\right)\overline{\Phi}(\beta, y) = 0. \tag{77}$$

На границах раздела слоёв $y_i = h_f$ и $y_i = h_f + h_d$ должны выполняться условия

$$\overline{\Phi}\Big|_{y=y_i-0} = \overline{\Phi}\Big|_{y=y_i+0},\tag{78}$$

$$\varepsilon_0 \left[\varepsilon_r \frac{\partial}{\partial y} \overline{\Phi} \right]_{y=y_i-0} = \varepsilon_0 \left[\varepsilon_r \frac{\partial}{\partial y} \overline{\Phi} \right]_{y=y_i+0} + \overline{\rho}_{si} \Big|_{y=y_i}. \quad (79)$$

Потенциал в бесконечности и на поверхности металлической ферромагнитной плёнки, расположенной на безграничном проводящем экране, должен обращаться в нуль. Поэтому имеем ещё два граничных условия

$$\overline{\Phi}\Big|_{y=0} = 0, \qquad \overline{\Phi}\Big|_{y=\infty} = 0.$$
 (80)

В общем случае решения уравнений (77) и (80) имеют вид

$$\overline{\Phi}(\beta, y) = \begin{cases} A_1 e^{-|\beta|(y - h_d - h_f)} & \text{при } y \ge h_d + h_f, \\ A_2 e^{-|\beta|(y - h_d - h_f)} + \\ + A_3 e^{|\beta|(y - h_d - h_f)} & \text{при } h_f \le y \le h_d + h_f, \\ A_4 \operatorname{sh}(|\beta|y) & \text{при } 0 \le y \le h_f. \end{cases}$$
(81)

Сшивая решения формулами (78)–(79) при $y_i = h_d + h_f$, получаем

$$A_1 = A_2 + A_3, (82)$$

$$-\varepsilon_d A_2 + \varepsilon_d A_3 = -A_1 + \frac{1}{|\beta|} \varepsilon_0 \sum_{j=1}^n \overline{\rho}_{sj}(\beta).$$
 (83)

Аналогично сшивая при $y_i = h_f$, имеем

$$A_{4} \operatorname{sh} (|\beta| h_{f}) = A_{2} e^{|\beta| h_{d}} + A_{3} e^{-|\beta| h_{d}},$$

$$\frac{\varepsilon_{f}}{\varepsilon_{d}} A_{4} \operatorname{ch} (|\beta| h_{f}) = -A_{2} e^{|\beta| h_{d}} + A_{3} e^{-|\beta| h_{d}}.$$
(84)

Из (84) находим

$$A_{2} = \frac{1}{2} \left[\operatorname{sh} (|\beta| h_{f}) - \frac{\varepsilon_{f}}{\varepsilon_{d}} \operatorname{ch} (|\beta| h_{f}) \right] e^{-|\beta| h_{d}} A_{4},$$

$$A_{3} = \frac{1}{2} \left[\operatorname{sh} (|\beta| h_{f}) + \frac{\varepsilon_{f}}{\varepsilon_{d}} \operatorname{ch} (|\beta| h_{f}) \right] e^{|\beta| h_{d}} A_{4}.$$
(85)

Подставляя (85) в (82), получаем

$$A_{1} = \left[\operatorname{sh}(|\beta| h_{f}) \operatorname{ch}(|\beta| h_{d}) + \frac{\varepsilon_{f}}{\varepsilon_{d}} \operatorname{ch}(|\beta| h_{f}) \operatorname{sh}(|\beta| h_{d}) \right] A_{4}. (86)$$

Подставляя (85), (86) в (83), находим

$$A_{1} = \frac{\varepsilon_{f} \operatorname{th}(|\beta|h_{d}) + \varepsilon_{d} \operatorname{th}(|\beta|h_{f})}{D|\beta|\varepsilon_{0}} \sum_{j=1}^{n} \overline{\rho}_{sj}(\beta),$$

$$A_{2} = \frac{1}{2} e^{-|\beta|h_{d}} \frac{\varepsilon_{d} \operatorname{th}(|\beta|h_{f}) - \varepsilon_{f}}{\operatorname{ch}(|\beta|h_{d})D|\beta|\varepsilon_{0}} \sum_{j=1}^{n} \overline{\rho}_{sj}(\beta),$$

$$A_{3} = \frac{1}{2} e^{|\beta|h_{d}} \frac{\varepsilon_{d} \operatorname{th}(|\beta|h_{f}) + \varepsilon_{f}}{\operatorname{ch}(|\beta|h_{d})D|\beta|\varepsilon_{0}} \sum_{j=1}^{n} \overline{\rho}_{sj}(\beta),$$

$$A_{4} = \frac{\varepsilon_{d}}{\operatorname{ch}(|\beta|h_{f})\operatorname{ch}(|\beta|h_{d})D|\beta|\varepsilon_{0}} \sum_{j=1}^{n} \overline{\rho}_{sj}(\beta),$$
(87)

где

$$D = \varepsilon_f \varepsilon_d + \varepsilon_f \operatorname{th}(|\beta| h_d) + \varepsilon_d \left[1 + \varepsilon_d \operatorname{th}(|\beta| h_d) \right] \operatorname{th}(|\beta| h_f). (88)$$

Подставляя (87) в (81), находим Фурье-трансформанту для потенциала на высоте i-го полоскового проводника $y_i = h_d + h_f$

$$\overline{\Phi}_{i}(\beta) = \varepsilon_{0}^{-1} \sum_{j=1}^{n} \varphi(\beta) \, \overline{\rho}_{sj}(\beta). \tag{89}$$

где вещественная функция

$$\varphi(\beta) = \frac{\left[\varepsilon_f \operatorname{th}(|\beta| h_d) + \varepsilon_d \operatorname{th}(|\beta| h_f)\right] |\beta|^{-1}}{\varepsilon_f \varepsilon_d + \varepsilon_f \operatorname{th}(|\beta| h_d) + \varepsilon_d \left[1 + \varepsilon_d \operatorname{th}(|\beta| h_d)\right] \operatorname{th}(|\beta| h_f)}. \tag{90}$$

Вычислим погонную плотность энергии электростатического поля

$$W_e = \frac{1}{2} \int_{x=-\infty}^{\infty} \int_{y=0}^{\infty} \mathbf{DE} \, dx \, dy \,. \tag{91}$$

Так как

$$\mathbf{E} = -\operatorname{grad}\Phi, \tag{92}$$

то

$$W_e = -\frac{1}{2} \int_{x=-\infty}^{\infty} \int_{y=0}^{\infty} \mathbf{D} \operatorname{grad} \Phi \, dx \, dy \,. \tag{93}$$

Используя правило действий с оператором ∇ , получим

$$W_e = -\frac{1}{2} \int_{x=-\infty}^{\infty} \int_{y=0}^{\infty} \left[\operatorname{div}(\Phi \mathbf{D}) - \Phi \operatorname{div} \mathbf{D} \right] dx dy.$$
 (94)

Согласно теореме о дивергенции интеграл от первого члена в квадратных скобках равен интегралу ΦD_n по замкнутому контуру, проходящему по ферромагнитной плёнке и замыкающемуся в бесконечности в верхней полуплоскости. Так как потенциал от зарядов равен нулю на поверхности ферромагнитной плёнки и в бесконечности, то интеграл по контуру будет равен нулю. Поэтому получаем

$$W_e = \frac{1}{2} \int_{x=-\infty}^{\infty} \int_{y=0}^{\infty} \Phi \operatorname{div} \mathbf{D} \, dx dy.$$
 (95)

Учитывая, что div **D** является объёмной плотностью зарядов, а заряды располагаются только на проводниках с поверхностной плотностью $\rho_{s\,i}$, то

$$W_e = \frac{1}{2} \sum_{i=1}^{n} \int_{-\infty}^{\infty} \Phi(x, y_i) \rho_{si}(x) dx.$$
 (96)

После выполнения преобразований Фурье (75), (76) формула (96) принимает вид

$$W_e = \frac{1}{4\pi} \sum_{i=1}^{n} \int_{-\infty}^{\infty} \overline{\Phi}_i(\beta) \, \overline{\rho}_{si}^*(\beta) \, d\beta.$$
 (97)

Поверхностную плотность зарядов $\rho_{si}(x)$ будем искать в виде разложения в ряд по многочленам Чебышева

$$\rho_{si}(x) = \frac{2}{\pi w_i \sqrt{1 - u_i^2}} \sum_{m=0}^{\infty} A_{im} T_m(u_i),$$
 (98)

где величина u_i определена формулой (57). Здесь коэффициенты разложения A_{im} — вещественные функции x, постоянные на участке $x_i - w_i/2 < x < x_i + w_i/2$ и равные нулю в остальной части. Первый коэффициент $A_{i0} = Q_i$, что следует из условия

$$Q_i = \int_{x=-\infty}^{\infty} \rho_{si}(x) dx.$$
 (99)

После выполнения преобразования Фурье формула (98) принимает вид

$$\overline{\rho}_{si}(\beta) = e^{i\beta x_i} \sum_{m=0}^{\infty} i^m A_{im} J_m(\beta w_i/2).$$
 (100)

Подставляя (100) в (97), получаем

$$W_e = \frac{1}{2\pi\varepsilon_0} \sum_{i,j=1}^{n} \sum_{m,l=0}^{\infty} A_{im} A_{jl} W_{imjl}, \qquad (101)$$

где

$$W_{imjl} = \int_{0}^{\infty} \varphi(\beta) J_{m}(\beta w_{i}/2) J_{l}(\beta w_{j}/2) \times \cos \left[\beta (x_{i}-x_{j}) + \frac{\pi}{2} (m-l)\right] d\beta.$$
(102)

Дифференцируя выражение (101) по коэффициентам A_{jl} , где j = 1, 2, ... n, l = 1, 2, 3, ... и приравнивая производные нулю, получаем систему линейных уравнений для нахождения коэффициентов разложения A_{im} , минимизирующих погонную плотность энергии электрического поля

$$\sum_{i=1}^{n} \sum_{m=1}^{\infty} A_{im} W_{imjl} = -\sum_{i=1}^{n} Q_{i} W_{i0jl}.$$
 (103)

Решая систему неоднородных линейных уравнений (103), можно найти коэффициенты разложения A_{im} для функции плотности поверхностных зарядов на полосковых проводниках $\rho_{si}(x)$, отвечающие зарядам Q_i .

Рассчитаем напряжение U_i на i-м полосковом проводнике, отвечающее зарядам Q_j ($j=1,2,\ldots n$) с $Q_i\neq 0$. Для этого запишем тождество

$$U_i Q_i = \Phi(x, y) \Big|_{x=x_i, y=h_i+h_d} \int_{-\infty}^{\infty} \rho_{si}(x) dx.$$
 (104)

Внося функцию $\Phi(x, y)$ под знак интеграла, получаем

$$U_i Q_i = \int_{-\infty}^{\infty} \Phi(x, y_i) \rho_{si}(x) dx.$$
 (105)

После выполнения преобразования Фурье имеем

$$U_{i}Q_{i} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\Phi}_{i}(\beta) \overline{\rho}_{si}^{*}(\beta) d\beta.$$
 (106)

Формула (106) после подстановки в неё Фурье-трансформанты (89), принимает вид

$$U_{i} = \frac{1}{2\pi\varepsilon_{0}Q_{i}} \sum_{j=1}^{n} \int_{-\infty}^{\infty} \varphi(\beta) \overline{\rho}_{si}^{*}(\beta) \overline{\rho}_{sj}(\beta) d\beta.$$
 (107)

Подставляя в (107) разложение (100) для функции $\bar{\rho}_{si}(\beta)$, находим напряжение на i-м проводнике

$$U_{i} = \frac{1}{\pi \varepsilon_{0} Q_{i}} \sum_{j=1}^{n} \sum_{m,l=0}^{\infty} W_{imjl} A_{im} A_{jl}.$$
 (108)

где матрица $w_{im\,jl}$ определяется формулой (102).

Таким образом, формулы (102), (103) и (108) позволяют при заданных зарядах Q_j найти коэффициенты разложения A_{im} для поверхностной плотности зарядов $\rho_{si}(x)$ и по ним рассчитать напряжение U_i на i-м проводнике.

БЕЗРАЗМЕРНАЯ МАТРИЦА ПОГОННОЙ ЁМКОСТИ

Найдём элементы C_{ij} безразмерной матрицы погонной ёмкости полосковых проводников **C**, определяемых формулой

$$Q_i = \varepsilon_0 \sum_{j=1}^n C_{ij} U_j . \tag{109}$$

Перепишем формулу в виде

$$\varepsilon_0 U_j = \sum_{j=1}^n \left[\mathbf{C}^{-1} \right]_{ij} \mathbf{Q}_j. \tag{110}$$

Обнуляя все заряды Q_j на полосковых проводниках кроме одного заряда Q_i на i-м проводнике, находим диагональный элемент обратной матрицы ёмкости

$$\left[\mathbf{C}^{-1}\right]_{ii} = \varepsilon_0 U_i(Q_i) / Q_i. \tag{111}$$

Теперь сделаем все заряды равными нулю кроме двух зарядов Q_i и Q_j . Тогда из (110) следует, что недиагональные элементы можно рассчитать по формуле

$$\left[\mathbf{C}^{-1}\right]_{ij} = \varepsilon_0 U_i(Q_i, Q_j) / Q_j - \left[\mathbf{C}^{-1}\right]_{ii} Q_i / Q_j. \quad (112)$$

В формулах (111) и (112) в списке аргументов функции $U_i(Q_i,Q_j)$ перечислены только ненулевые заряды на полосковых проводниках.

Таким образом, формулы (102), (103), (108), (111), (112) позволяют рассчитать элементы обратной безразмерной матрицы погонной ёмкости полосковых проводников связанных микрополосковых линий.

ПАРАМЕТРЫ КВАЗИПОПЕРЕЧНЫХ ВОЛН

Для описания квазипоперечных волн в многопроводной линии передачи удобно пользоваться векторами $\mathbf{U}(z,t)$ и $\mathbf{I}(z,t)$, компонентами которых являются напряжение $U_i(z,t)$ и ток $I_i(z,t)$ на i-м проводнике. Векторные функции $\mathbf{U}(z,t)$ и $\mathbf{I}(z,t)$ в области низких частот, когда продольными составляющими напряжённостей электрического и магнитного поля можно пренебречь, могут быть рассчитаны решением телеграфных уравнений

$$-\frac{\partial}{\partial z}\mathbf{U}(z,t) = \mu_0 \mathbf{L} \frac{\partial}{\partial t} \mathbf{I}(z,t), \qquad (113)$$

$$-\frac{\partial}{\partial z}\mathbf{I}(z,t) = \varepsilon_0 \mathbf{C} \frac{\partial}{\partial t}\mathbf{U}(z,t). \tag{114}$$

Решение будем искать в виде бегущих гармонических волн

$$I(z,t) = I_{m} \exp(i k_{m} z - i \omega t), \qquad (115)$$

$$\mathbf{U}(z,t) = \mathbf{U}_{m} \exp(i k_{m} z - i \omega t), \tag{116}$$

где волновое число k_m m-й моды связано с эффективной проницаемостью ϵ_m равенством

$$k_m = \frac{\omega}{c} \sqrt{\varepsilon_m} . {(117)}$$

Подставляя выражения (115)–(116) в уравнения (113)–(114) и исключая вектор амплитуд напряжений \mathbf{U}_m , получаем систему однородных уравнений в векторной форме

$$\mathbf{L}\mathbf{I}_{m} = \varepsilon_{m}\mathbf{C}^{-1}\mathbf{I}_{m}. \tag{118}$$

Выражение (118) имеет форму уравнений обобщённой линейной задачи на собственное значение (ϵ_m) для двух матриц (\mathbf{L} и \mathbf{C}^{-1}), которые легко решаются численно стандартными процедурами.

Подставляя в (113) найденный вектор токов \mathbf{I}_m вместе с эффективной диэлектрической проницаемостью ϵ_m , находим вектор напряжений

$$\mathbf{U}_{m} = \frac{Z_{c}}{\sqrt{\varepsilon_{m}}} \mathbf{L} \mathbf{I}_{m}, \tag{119}$$

где характеристическое сопротивление свободного пространства

$$Z_c = \sqrt{\mu_0/\epsilon_0} \ . \tag{120}$$

Таким образом, формулы (118) и (119) позволяют по найденным выше безразмерным матрицам \mathbf{L} и \mathbf{C}^{-1} рассчитать электрические параметры m-й моды \mathbf{I}_m , \mathbf{U}_m и $\boldsymbol{\epsilon}_m$.

ЗАКЛЮЧЕНИЕ

Получены формулы для численного расчёта параметров распространения гармонических электромагнитных волн СВЧ в открытой многопроводной микрополосковой линии передачи на слоистой подложке, содержащей металлическую ферромагнитную плёнку. Расчёт выполнен в приближении квазипоперечных волн.

Эффективные относительные диэлектрические проницаемости нормальных волн и отвечающие им амплитуды токов и напряжений на полосковых проводниках линии передачи являются собственными значениями и собственными векторами системы телеграфных уравнений.

Формулы для матриц погонной индуктивности и ёмкости полосковых проводников получены в результате точного решения двумерных граничных задач магнито- и электростатики с использованием преобразования Фурье. Тензор магнитной СВЧ проницаемости плёнки является решением линеаризованного уравнения Ландау-Лифшица.

Магнитная плёнка обладает одноосной магнитной анизотропией, ось которой лежит в плоскости под произвольным углом к полосковым проводникам. Расчёт выполнен с учётом как магнитных, так и омических потерь в плёнке.

Предполагается, что полосковые проводники и экран линии передачи являются идеальными проводниками. Толщина полосковых проводников нулевая.

Функции распределения поверхностных токов и зарядов по ширине полосковых проводников, представленные в виде рядов по многочленам Чебышева, рассчитываются путём минимизации погонных энергий магнитного и электрического поля.

Полученные формулы могут быть использованы при математическом моделировании датчиков магнитного поля, а также перестраиваемых устройств СВЧ на основе ферромагнитных плёнок.

СПИСОК ЛИТЕРАТУРЫ

- Саланский Н.М., Ерухимов М.Ш. Физические свойства и применение магнитных пленок. Новосибирск: Наука. Сибирское отделение. 1975. – 223 с.
- 2. Беляев Б.А., Бутаков С.В., Лексиков А.А. Микрополосковые датчики магнитных полей // Наука производству. 2003. № 5(61). с. 11–16.
- 3. Беляев Б.А., Бутаков С.В., Лексиков А.А. Микрополосковый тонкопленочный датчик слабых магнитных полей // Микроэлектроника. 2001. № 3. с. 228-237.
- 4. Беляев Б.А., Бутаков С.В., Лексиков А.А., Бабицкий А.Н. Датчик магнитного поля. // Патент РФ № 2150712, БИ № 16, 2000.
- 5. Беляев Б.А., Бутаков С.В., Тюрнев В.В. Микрополосковый датчик слабых магнитных полей. // Решетневские чтения. Вып. 2. Красноярск. Сибирская аэрокосмическая акад. 1998. с.110–111.
- Беляев Б.А., Тюрнев В.В. Датчик магнитного поля. // Патент РФ № 2091808, БИ № 27, 1997.
- 7. Беляев Б.А., Тюрнев В.В. Датчик магнитного поля. // Авторское свидетельство СССР № 1810855, БИ № 15, 1993.
- 8. Виприцкий Д. Д., Назаров А. В., Раевский С. Б. Экранированная микрополосковая линия с феррит-диэлектрической подложкой. // Антенны, № 2, 2007. с. 17–20.
- 9. Cao M., Feng W., Pietig R., Wu H. Design of Microstrip Ferrite-Coupled Line Devices Using Perturbation Theory. // Japanese Journal of Applied Physics Vol. 45, No. 4A, 2006, pp. 2621–2627.
- Tsutsumi M., Asahara T. Microstrip Lines Using Yttrium Iron Garnet Film. // IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 10, 1990, pp. 1461–1467.
- 11. Havemann R. H., Davis L. E. Conductivity and the Microwave Properties of 81-Permalloy Thin Films. // IEEE Transactions on Microwave Theory and Techniques. No. 1. 1971, pp. 113–116.
- 12. Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука. 1973. 591 с.
- 13. Митра Р., Ли С. Аналитические методы теории волноводов. М.: Мир. 1974. 327 с.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
КОНСТРУКЦИЯ ЛИНИИ	4
ТЕНЗОР МАГНИТНОЙ ПРОНИЦАЕМОСТИ	6
ПОТОК ИНДУКЦИИ МАГНИТНОГО ПОЛЯ	8
ВЕКТОРНЫЙ ПОТЕНЦИАЛ МАГНИТНОГО ПОЛЯ	9
КВАЗИСТАТИЧЕСКИЕ КОЛЕБАНИЯ В МЕТАЛЛИЧЕСКОЙ ФЕРРОМАГНИТНОЙ ПЛЁНКЕ	12
БЕЗРАЗМЕРНАЯ МАТРИЦА ПОГОННОЙ ИНДУКТИВНОСТИ	18
ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ	21
БЕЗРАЗМЕРНАЯ МАТРИЦА ПОГОННОЙ ЁМКОСТИ	27
ПАРАМЕТРЫ КВАЗИПОПЕРЕЧНЫХ ВОЛН	28
ЗАКЛЮЧЕНИЕ	30
СПИСОК ЛИТЕРАТУРЫ	.31

Научное издание

Тюрнев Владимир Вениаминович

КВАЗИСТАТИЧЕСКИЙ РАСЧЁТ СВЯЗАННЫХ МИКРОПОЛОСКОВЫХ ЛИНИЙ НА СЛОИСТОЙ ПОДЛОЖКЕ, СОДЕРЖАЩЕЙ МЕТАЛЛИЧЕСКУЮ ФЕРРОМАГНИТНУЮ ПЛЁНКУ

Отв. за выпуск В.В.Тюрнев Редактор Н.И.Попова

ПЛД № 48-39 от 25.03.1996 Сдано в набор 21.09.2007. Подписано в печать 15.10.2007. Формат 60×90/16. Гарнитура "Ариал". Объём 0.8 усл. печ. л., 2.0 уч.-изд. л. Заказ № 49. Тираж 60 экз.

Отпечатано в типографии Института физики СО РАН. 660036, Красноярск, Академгородок, 50, стр. 38.