На правах рукописи

Осипова Ирина Владимировна

ПОЛУЧЕНИЕ И СВОЙСТВА НАНОДИСПЕРСНЫХ ФОРМ УГЛЕРОДА В ПЛАЗМЕ ВЧ ДУГИ С НЧ МОДУЛЯЦИЕЙ

01.04.01 – приборы и методы экспериментальной физики

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Красноярск 2009

Работа выполнена в ла вещества Института физик	боратории аналитических методов исследования и им. Л.В. Киренского СО РАН
Научный руководитель:	доктор технических наук, профессор Чурилов Григорий Николаевич
Официальные оппоненты:	доктор физико-математических наук, профессор Слабко Виталий Васильевич доктор технических наук, профессор Михеев Анатолий Егорович
Ведущая организация:	Воронежский государственный технический университет, г. Воронеж

Защита состоится 23 октября 2009 г. в 14.30 час. на заседании диссертационного Совета Д 003.055.01 при Институте физики им. Л.В. Киренского СО РАН по адресу: 660036, Красноярск, Академгородок 50, стр. 38.

С диссертацией можно ознакомиться в библиотеке Института физики им. Л.В. Киренского СО РАН.

Автореферат разослан 10 сентября 2009 г.

Ученый секретарь диссертационного совета: доктор физико-математических наук Втюрин Александр Николаевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Во второй половине 80-х годов были открыты каркасные формы углерода, имеющие промежуточную степень гибридизации между sp^2 (графит) и sp^3 (алмаз). Фуллерены – сфероидальные молекулы, имеющие форму усеченного икосаэдра, в узлах которого находятся атомы углерода. Углеродные нанотрубки (УНТ) – протяженные цилиндрические структуры, представляющие собой свернутую графитовую плоскость, одно- или многослойные.

Возможность получения наночастиц, имеющих ядро из одного вещества, а оболочку из другого, долго была предметом дискуссий; в настоящее время такие частицы уже синтезируются и исследуются. Фуллерены, нанотрубки и наночастицы со структурой ядро-оболочка перспективны для электроники, медицины и энергетики. Эти вещества проявляют необычные свойства. Фуллерены имеют общую π -систему электронов и представляют единственную растворимую форму чистого углерода. Нанотрубки совмещают в себе свойства металлов, полупроводников и диэлектриков. Наночастицы – это "большие атомы", так как имеют свою энергетическую структуру и проявляют спектральные свойства, зависящие от их размеров. В рамках водородной энергетики к фуллеренам, УНТ и наночастицам интерес проявляется, как к самым перспективным сорбентам для аккумуляторов водорода. Введение УНТ в различные полимеры существенно увеличивает их прочность, стойкость к истиранию, а также делает их антистатическими.

Распыление графитовых электродов в дуге постоянного тока в среде гелия при давлении 13 кПа – это первый и наиболее распространенный метод получения фуллеренов в макроскопических количествах. Метод был предложен В. Кретчмером в 1990 г. Содержание фуллеренов в углеродном конденсате Экстрагированная неполярными растворителями достигает 10%. смесь фуллеренов содержит С₆₀/С₇₀ в отношении 10/1 [1]. В наши дни получение фуллеренов обычно осуществляют дуговым способом при пониженном давлении, т.е. методом В. Кретчмера. Есть и альтернативные способы, например метод синтеза путем сжигания в пламени органических веществ (бензол) в атмосфере кислорода и аргона при пониженном давлении 1.6-13.3 кПа. Выход фуллеренов при таком способе синтеза составляет 2-4 %, а фуллереновая смесь не менее чем на 12 % состоит из высших фуллеренов. Главным недостатком метода является то, что параллельно с фуллеренами в больших количествах образуются и полиароматические углеводороды [2].

Наиболее распространенными методами синтеза УНТ являются: лазерная абляция, химическое осаждение из газовой фазы (CVD) и метод термического распыления графитовых электродов в плазме дугового разряда в атмосфере гелия. Содержание УНТ в саже на поверхности катодного депозита при электродуговом методе синтеза обычно не превышает 50%. Остальной углеродный конденсат, образующийся на охлаждаемых стенках разрядной камеры, содержит довольно малое количество УНТ [3]. Кроме того, УНТ, образующиеся на поверхности катода, собираются в цилиндрические пучки, а

при нестабильном токе дуги проявляют тенденцию к спеканию. Для синтеза УНТ в качестве катализатора чаще всего используют порошки 3d-металлов [4]. В литературе нет сведений о синтезе УНТ в плазме ВЧ дуги, в потоке гелия атмосферного давления. Это может быть связано лишь с тем, что такие исследования еще не проводились. В настоящее время известно, что скорость образования фуллеренов максимальна в области температур 2500-3500 К и концентрации электронов 10¹⁶ см⁻³. Питание дуги током высокой частоты (ВЧ) обеспечивает увеличение объема зоны оптимального образования фуллеренов, за счет скин-эффекта. Это позволяет синтезировать фуллерены не при низком давлении, а в потоке гелия атмосферного давления, т.е. без использования вакуумного оборудования. В условиях такого синтеза получается, что содержание фуллеренов в углеродном конденсате (при выделении бензолом) 5-6 % и лишь иногда удается достичь величины 10 % [5]. К увеличению содержания фуллеренов за счет увеличения объема плазмы с оптимальными фуллеренов параметрами (температуры для сборки И электронной концентрации) может привести генерирование в плазме акустических волн, так как в этом случае меняются условия охлаждения плазмы. Возбуждение звуковых волн в камере путем введения электродинамического излучателя позволяет увеличить содержание фуллеренов в углеродном конденсате до 8 % [6]. Электродинамический излучатель, введенный в камеру для возбуждения в ней акустических колебаний, из-за воздействия плазмы обычно быстро выходит из строя. Из литературы известно, что звуковые колебания в плазме можно возбуждать модулированным разрядом [7]. Таким образом, актуально разработать методику синтеза углеродных наноматериалов в плазме дуги с низкочастотной (НЧ) модуляцией тока.

Работа выполнена в рамках программы СО РАН по приоритетному направлению 2.2.1.1., а также грантов РФФИ № 09-03-00383, № 08-08-00521.

Цели и задачи работы

Целью данной работы является: изучение процессов синтеза фуллеренов, углеродных нанотрубок и наночастиц, в углеродно-гелиевой плазме атмосферного давления ВЧ дуги и ВЧ дуги с НЧ модуляцией, их получение и исследование. Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Разработать метод синтеза углеродных наноматериалов в плазме ВЧ углеродно-гелиевой дуги с НЧ модуляцией в камере с акустическим резонансом на частоте модуляции дуги.
- 2. Исследовать влияние НЧ модуляции ВЧ дуги на содержание фуллеренов, образующихся в углеродно-гелиевой плазме атмосферного давления.
- 3. Исследовать продукты, образующиеся при введении никеля в углеродногелиевую плазму атмосферного давления ВЧ дуги и ВЧ дуги с НЧ модуляцией (фуллерены, нанотрубки и наночастицы).
- 4. Получить и проанализировать спектральные характеристики углеродногелиевой плазмы ВЧ дуги атмосферного давления.

Научная новизна

Впервые показано, что НЧ модуляцией ВЧ дуги можно изменять содержание фуллеренов, образующихся в углеродно-гелиевой плазме атмосферного давления.

Впервые в эмиссионных спектрах ВЧ углеродно-гелиевой плазмы атмосферного области температур 2600 К давления В OT 3700 ДО зарегистрированы молекулярные полосы C_2 И отсутствуют линии, соответствующие излучению атомов углерода. Это подтверждает концепцию сборки молекул фуллерена в плазме через кластер С₂.

Практическая ценность

Разработан и применен метод синтеза углеродных наноматериалов в плазме ВЧ углеродно-гелиевой дуги с НЧ модуляцией в камере с акустическим резонансом на частоте модуляции дуги.

Впервые установлено, что НЧ модуляция ВЧ дуги атмосферного давления приводит к увеличению содержания фуллеренов в углеродном конденсате на 3.4–4.4 %, при этом отношение фуллеренов C_{60}/C_{70} уменьшается на 8–9 %, и уменьшению содержания нанотрубок в углеродном конденсате на 9–10 %.

Использование ВЧ дуги с НЧ модуляцией при распылении углеродных электродов содержащих никель в потоке гелия атмосферного давления позволяет стабильно получать углеродный конденсат, с конверсией 80 %, из которого можно выделить: фуллеренов – 9.4 %, многостеночных углеродных нанотрубок – 39 % и углеродно-никелевых наночастиц – 1 %.

Основные положения, выносимые на защиту

1. Разработан и применен метод синтеза углеродных наноматериалов в плазме ВЧ углеродно-гелиевой дуги с НЧ модуляцией в камере с акустическим резонансом на частоте модуляции дуги.

2. Показано, что влияние НЧ модуляции ВЧ дуги атмосферного давления приводит к увеличению содержания фуллеренов в углеродном конденсате на 3.4-4.4 %, при этом отношение фуллеренов C_{60}/C_{70} уменьшается на 8-9 %, и уменьшению содержания нанотрубок в углеродном конденсате на 9-10 %.

3. Показано, что при введении никеля в плазме ВЧ дуги с НЧ модуляцией в процессе синтеза образуется нанодисперсный углеродный конденсат, из которого выделено: фуллеренов – 9.4 %, многостеночных углеродных нанотрубок – 39 %, углеродно-никелевых наночастиц – 1 %.

4. В области плазмы с оптимальными параметрами сборки фуллеренов (температура от 3700 до 2600 К) зарегистрированы молекулярные полосы C₂ и отсутствуют линии, соответствующие излучению атомов углерода. Это подтверждает концепцию сборки молекул фуллерена через кластер C₂.

Апробация

Материалы диссертации докладывались и обсуждались на ряде конференций: Biennial international workshop "Fullerenes and atomic clusters" (Санкт-Петербург – 2009, 2007), International conference "Hydrogen materials

science and chemistry of carbon nanomaterials" (Ялта – 2009, Судак – 2007), Международной конференции "Электромеханика, электротехнологии, электротехнические материалы и компоненты" (Алушта – 2008, 2006), International conference "Plasma physics and plasma technology" (Минск – 2006), Всероссийской научно-технической конференции с международным участием "Ультрадисперсные порошки, наноструктуры, материалы: получение, свойства, применение. IV Ставеровские чтения" (Красноярск – 2006).

Работа "Recording of nitrogen-contained carbon-helium plasma parameters by emission spectroscopy method and investigation of obtained nanosized substances", представленная на Biennial international workshop "Fullerenes and atomic clusters" (Санкт-Петербург – 2009) была отмечена как лучшая среди работ представленных молодыми учеными.

Публикации

Основные результаты диссертации изложены в 15 печатных работах, включая 5 статей в периодических изданиях из списка ВАК.

Личный вклад автора

Автор активно участвовал в постановке цели и задач диссертационной работы, в разработке экспериментальной установки, самостоятельно выполнял экспериментальные работы, связанные с получением и выделением образцов, проводил исследования методами рентгенофазового анализа И высокоэффективной хроматографии жидкостной И интерпретировал полученные результаты. Исследования рентгеновской методами: фотоэлектронной спектроскопии, комбинационного рассеяния, окислительного термогравиметрического анализа, электронного парамагнитного резонанса, рентгеноструктурного флуоресцентного анализа были выполнены в Центре КНЦ CO PAH. Исследования методами коллективного пользования электронной микроскопии и дифракции электронов были выполнены в Центре коллективного пользования ФГОУ ВПО СФУ.

Структура и объем работы

Диссертационная работа состоит из введения, литературного обзора, экспериментальной части, заключения и списка используемых литературных источников. Работа изложена на 102 страницах, иллюстрируется 48 рисунками и содержит 5 таблиц. Список цитируемой литературы включает 97 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи исследования, представлена научная новизна и практическая значимость работы. Дана краткая характеристика структуры и объема работы.

Первая глава является обзорной. Рассмотрены основные аллотропные модификации углерода. Обобщены и проанализированы основные

литературные данные по синтезу и выделению фуллеренов и нанотрубок. Описан метод синтеза фуллеренов в плазме ВЧ дуги в потоке гелия атмосферного давления. Изложены результаты влияния частоты тока питания на содержание фуллеренов в углеродном конденсате. Представлены оценки скорости образования фуллерена С₆₀ в зависимости от температуры и электронной концентрации плазмы. Рассмотрен один из способов управления параметрами плазмы с помощью возбуждения акустических волн в разряде постоянного тока. Изложенные в обзорной главе данные использовались для постановки цели и задач диссертационной работы.

В главе 2 описана конструкция плазмохимической установки для синтеза фуллеренов, углеродных нанотрубок и наночастиц, на которой проводились исследования, рис. 1. Конструкция установки включает камеру, внутренние размеры которой соответствуют акустическому резонатору, с резонансом на частоте 5.3 кГц при заполнении камеры гелием. Для частоты акустического резонанса (5.3 кГц) измеренная добротность камеры 56. В конструкции камеры имеются два кварцевых окна, одно на высоте 45 и другое – 60 мм от верхней плоскости внешнего электрода, для наблюдения оптических спектров излучения плазмы фуллереновой дуги.

Рис. 1. Схема плазмохимической установки: 1 – внутренний
графитовый электрод; 2 – графитовые контакты; 3 – внешний электрод; 4 – углеродно-гелиевая плазма;
5 – кварцевые окна; 6 – расходомер; 7 – понижающий трансформатор; 8 – нижняя камера; 9 – верхняя камера; 10 – азотная ловушка

Электрическая схема установки представлена на рис. 2. Питание установки осуществляется от генератора переменного тока мощностью 20 кВт с перестраиваемой частотой от 20 до 100 кГц и возможностью ее периодического

изменения с частотой в диапазоне от 0.1 до 15 кГц. Выходное напряжение генератора 450 В. Согласование выходного сопротивления генератора и схемы коэффициентом выполняет трансформатор 2, с трансформации 1/2Последовательный колебательный контур, состоящий из индуктивности 3, первичной обмотки трансформатора (коэффициент емкости 4 И 5 10) формирует сигнал, модулированный частоте трансформации ПО амплитуде, в соответствии с характеристикой контура настроенного на резонансную частоту генератора 44 кГц и ее НЧ периодическим изменением.

Рис. 2. Электрическая схема установки: 1 – генератор токов высокой частоты; 2 – общий согласующий трансформатор; 3 – индуктивность; 4 – емкость; 5 – трансформатор, согласующий сопротивления дуги и контура; 6 – дуга

Осциллограммы тока и напряжения ВЧ дуги в рабочем режиме без НЧ модуляции и при НЧ модуляции дуги, а также динамическая вольтамперная характеристика ВЧ дуги представлены на рис. 3. Изменение тока и напряжения в дуге происходит по гармоническому закону, на резонансной частоте генератора 44 кГц, амплитудные значения тока и напряжения составляют 280 A и 60 В (рис. 3а). При модуляции сигнала на частоте 5.3 кГц (рис. 3б) в течение первой половины периода подается сигнал на частоте 44 кГц, при этом ток в цепи составляет 280 A, а в течение второй половины периода подается сигнал на частоте 66 кГц и ток в цепи уменьшается до 150 A в следствие увеличения полного сопротивления цепи.

Рис. 3. Осциллограммы тока и напряжения: а – без модуляции; б – на частоте модуляции 5.3 кГц; в – ВАХ дуги на частоте 44 кГц

В главе 3 представлены результаты исследования излучения углеродногелиевой плазмы ВЧ дуги атмосферного давления.

Спектр излучения в диапазоне 340-640 нм, полученный для плазменного потока на высоте 45 мм от плоскости внешнего электрода, представлен на рис. 4. Сравнение с известными молекулярными спектрами показывает, что все наблюдаемом спектре фуллереновой полосы В плазмы обусловлены молекулами CN и C₂ [8]. В указанном диапазоне длин волн отождествлены пять секвенций системы Свана молекулы С₂, начинающихся при: $\lambda = 619.12$ нм (Δv = -2), λ = 563.55 HM (Δ ν = -1), λ = 516.52 HM (Δ ν = 0), λ = 473.71 HM (Δ ν = 1) H λ = 438.25 нм ($\Delta v = 2$). Для молекулы циана CN отождествлены три секвенции из фиолетовой системы: $\lambda = 421.6$ нм ($\Delta v = -1$), $\lambda = 388.34$ нм ($\Delta v = 0$) и $\lambda =$ 359.04 нм ($\Delta v = 1$). Линия $H_{\alpha} \lambda = 656.28$ нм регистрируется только при добавлении водорода (3 л/мин) в поток гелия.

Рис. 4. Спектр излучения углеродно-гелиевой ВЧ дуги атмосферного давления

Температура дуги определенная по интенсивностям полос CN (λ = 388.34 нм и λ = 387.14 нм) с неразрешенной вращательной структурой составила 3700 К для плазменного потока на высоте 45 мм от плоскости внешнего электрода и 2600 К на высоте 60 мм [9]. Концентрация электронов в дуге определенная по ширине линии водорода λ = 656.28 нм составила 1.6·10¹⁷ см⁻³.

В главе 4 приводятся результаты исследования продуктов синтеза: углеродного конденсата, составляющего 80 %, и электродного депозита – 20 % от распыляемого углерода. Такое низкое содержание электродного депозита объясняется использованием переменного ВЧ тока дуги и одинаковыми

термическими условиями работы электродов. Результаты рентгенофазового анализа углеродного конденсата и электродного депозита, которые были получены в ВЧ дуге атмосферного давления при введении никеля, представлены на рис. 5. Масса вводимого никеля к углероду соответствует 1:30.

Рис. 5. Рентгенограммы исходных образцов: 1 – углеродный конденсат, содержание Ni – 6.3 %; 2 – электродный депозит, содержание Ni – 0.9 %

Методом окислительной термогравиметрии проведены исследования углеродного конденсата и электродного депозита в потоке 10 % О₂/Аг при скорости нагрева 5 °С/мин. На термограмме углеродного конденсата (рис. 6а), в области 250–500 °C наблюдается пик, характеризующий непрерывное окисление аморфного углерода (до 400 °C) и УНТ, а в области 650-900 °C наблюдается пик, характеризующий окисление графитизированных частиц. Окисление частиц никеля начинается при 500 °C И сопровождается постепенным увеличением наклона кривой ДТГ. Термограмма электродного депозита характеризуется процессом окисления графитизированных частиц в области 650-900 °С, рис. 6б.

В главе 5 представлены результаты исследования содержания фуллеренов в углеродном конденсате, образующемся в углеродно-гелиевой плазме атмосферного давления при влиянии НЧ модуляции на ВЧ дугу, а также при введении никеля в процессе синтеза. Выделение фуллеренов из углеродного конденсата проводилось в аппарате Сокслета. В качестве растворителя использовался бензол.

Рис. 6. Окислительные термограммы: а – исходного углеродного конденсата; б – электродного депозита

Введение НЧ модуляции ВЧ дуги позволяет увеличить содержание фуллеренов, рис. 7а. Так, без модуляции содержание фуллеренов составляло 5 %, а при резонансной частоте модуляции 5.3 кГц содержание фуллеренов достигало 8.4 %. Введение никеля в процессе синтеза позволяет увеличить содержание фуллеренов в углеродном конденсате до 9.4 % при модуляции дуги частотой 5.3 кГц. Содержание никеля в фуллеренах не превышает 0.01 %.

Исследование отношения C_{60}/C_{70} в фуллереновой смеси проводились по результатам ВЭЖХ с учетом экстинкций веществ на длине волны 323 нм. Введение никеля в процессе синтеза увеличивает отношение фуллеренов C_{60} к C_{70} на 30–35 %, рис. 7б. Однако, при НЧ модуляции ВЧ дуги отношение фуллерена C_{60} к C_{70} уменьшается на 8–9 %. Наибольшее количество высших фуллеренов зарегистрировано при распылении графитовых электродов содержащих никель в плазме ВЧ дуги с модуляцией на частоте 5.3 кГц.

Площади пиков поглощения индивидуальных фуллеренов по отношению к общей площади поглощения всей фуллереновой смеси составляют: C_{60} – 70.7 %, C_{70} – 20.3 %, высших фуллеренов (C_{76} , C_{78} , C_{80} , C_{82} , C_{84} и другие) – 5.8 %, оксидов C_{60} и C_{70} [10] – 3.2 %. Отношение C_{60}/C_{70} по массе составляет 2.98.

Рис. 7. Влияние частоты модуляции на: а – содержание фуллеренов в углеродном конденсате; б – отношение C₆₀/C₇₀ по массе в фуллереновой смеси; 1 – без введения никеля; 2 – с введением никеля

В главе 6 приведены методика выделения и результаты исследования УНТ и наночастиц, содержащихся в углеродном конденсате, полученном при введении никеля в процессе синтеза.

Выделение углеродных нанотрубок выполнялось согласно известной методике кипячения в концентрированной азотной кислоте [11]. Нерастворимый в кислоте осадок, отмывали дистиллированной водой от кислоты и образовавшейся соли и высушивали при нормальных условиях. Вес нанотрубок составлял 48 % от веса исходного конденсата, полученного без модуляции дуги, и 39 % при модуляции дуги на частоте 5.3 кГц. Содержание никеля в УНТ 0.1 %.

По отношению интенсивности колебаний $D ext{ } ex$

Окислительная термогравиметрия очищенных УНТ (поток 10 % O₂/Ar при скорости нагрева 5 °C /мин) показала, что в области 550–850 °C наблюдается один пик, характеризующий окисление всей массы образца, рис. 9. Сравнение термограммы с литературными данными [12] позволило установить, что все получаемые данным методом нанотрубки являются многостеночными.

12

Рис. 8. КР-спектры: а – исходного углеродного конденсата; б – очищенных УНТ

Рис. 9. Окислительная термограмма многостеночных нанотрубок

Исследования, проведенные методом электронной микроскопии, показали, что диаметр выделенных нанотрубок составляет 4–5 нм, при этом количество углеродных слоев в одной нанотрубке меняется от 12 до 14, а размер внутренней центральной полости нанотрубок соответствует межслоевому расстоянию 3.34 Å (рис. 10).

Рис. 10. Электронно-микроскопическое изображение УНТ

Далее из раствора полученного при кипячении углеродного конденсата в кислоте были выделены наночастиц в количестве 1 % от массы углеродного конденсата. По данным РСФА содержание никеля в наночастицах составляет 2 %.

Методом рентгеновской фотоэлектронной спектроскопии исследовались очищенные нанотрубки и наночастицы. Разложение экспериментальной линии содержащего C₁s образца. УHТ, позволило выделить компоненты, соответствующие связям: C=C с sp^2 -гибридизацией углерода (E = 284.5 эB) ~ 61 % от площади линии C1s, C-C с sp^3 -гибридизацией углерода (E = 285.3 эB) ~ 18 %, C=O, C-OH (E = 286.6 9B) ~ 10 %, COOH (E = 288.5 9B) ~ 7 %, O-COO (E = 290 эВ) ~ 4 % (рис. 11а). После ионного травления поверхности образца содержащего наночастицы на глубину 20 Å получена линия C1s, разложение которой, позволило выделить компоненты, соответствующие связям: С-Н (Е = 282.5 эВ) ~ 1 % от площади линии C1s, C=C с sp^2 -гибридизацией углерода (E = 284.5 эВ) ~ 47 %, C-C с sp^3 -гибридизацией углерода (E = 285.3 эВ) ~ 40 %, C=O, C-OH (E = 286.6 эВ) ~ 9 %, СООН (E = 288.5 эВ) ~ 3 % (рис. 11б). Следует отметить, что до травления поверхности образца компонента, соответствующая связи С-С с *sp*³-гибридизацией углерода, меньше, чем после травления, а компонента, соответствующая связи C=C с *sp*²-гибридизацией углерода, наоборот, больше. При дальнейшем травлении наблюдается только sp³-

гибридизация углерода. Это позволяет сделать вывод, что частицы имеют оболочку из углерода в состоянии *sp*²-гибридизации, под которой находится ядро из углерода в состоянии *sp*³-гибридизации.

Рис. 11. Фотоэлектронные спектры в области линии C1s: a – УНТ; б – углеродных наночастиц

Спектр КР углеродных наночастиц содержащих никель, приведен на рис. 12. На длине волны 1295 см⁻¹ наблюдается колебание, близкое к колебанию F_{2g} кристаллического алмаза (1333 см⁻¹, ширина пика на полувысоте 2.45 см⁻¹). Ряд теоретических расчетов показывает, что при уменьшении размера алмазного кристалла колебание F_{2g} смещается в сторону меньших длин волн, а ширина пика значительно увеличивается [13]. Так как в КР спектре углероднонаблюдаются колебания, характеризующие никелевых наночастиц не графитовую структуру (колебания D и G), а присутствует колебание, близкое к колебанию кристаллического алмаза, то можно предположить, что алмазоподобной оболочкой. Колебания, наночастицы никеля покрыты

расположенные в диапазоне длин волн от 100 до 700 см⁻¹, по-видимому, связаны с присутствием никеля в соединении с углеродом. Об этом же свидетельствуют данные, полученные методом дифракции электронов. Картина микродифракции электронов, полученная от группы наночастиц, позволяет предположить, что никель, содержащийся в них, находится в соединении с углеродом со стехиометрией Ni₃C и имеет ромбоэдрическую структуру.

Рис. 12. КР-спектр углеродно-никелевых наночастиц

Исследования, проведенные методом ЭПР, позволили сделать вывод, что углеродный конденсат, фуллерены, нанотрубки и наночастицы содержат ферромагнитные наночастицы никеля. Температурные исследования сигнала ЭПР от углеродного конденсата показали, что при понижении температуры интенсивность спектра уменьшается, низкая полевая часть спектра перемещается в еще более низкие поля, положение высоко полевой части спектра почти не изменяется (рис. 13). Такое поведение характерно для ферромагнитных частиц размером от 10 до 50 нм. Наблюдаемые линии, расположенные в низких и высоких полях, характеризуют присутствие кристаллической и аморфной фазы в образце [14]. Температурное поведение линий ЭПР наночастиц показывает, что при понижении температуры линия, расположенная в области высоких полей, уменьшается по интенсивности, но не смещается, а линия, расположенная в области низких полей, увеличивается по интенсивности и смещается в сторону высоких полей. Это позволяет предположить, что образец помимо самой мелкодисперсной фракции частиц никеля, присутствующих в углеродном конденсате (аморфной фазы), содержит никель в соединении с углеродом, что также подтверждает результаты, полученные методами комбинационного рассеяния и дифракции электронов.

Рис. 13. ЭПР спектры образцов содержащих никель при температуре: 1 – 293 К; 2 – 77 К; а – углеродного конденсата; б – наночастиц

выводы

1. Разработан и применен метод синтеза углеродных наноматериалов в плазме ВЧ углеродно-гелиевой дуги с НЧ модуляцией в камере с акустическим резонансом на частоте модуляции дуги.

2. Впервые установлено, что НЧ модуляция ВЧ дуги атмосферного давления приводит к увеличению содержания фуллеренов в углеродном конденсате на 3.4–4.4 %, при этом отношение фуллеренов C_{60}/C_{70} уменьшается на 8–9 %, и уменьшению содержания нанотрубок в углеродном конденсате на 9–10 %.

3. Показано, что при введении никеля в плазме ВЧ дуги с НЧ модуляцией в процессе синтеза образуется нанодисперсный углеродный конденсат, из которого выделено: фуллеренов – 9.4 %, многостеночных углеродных нанотрубок – 39 %, углеродно-никелевых наночастиц – 1 %.

4. Установлено, что в области плазмы с оптимальными параметрами сборки фуллеренов (температура от 3700 до 2600 К) зарегистрированы молекулярные полосы C₂ и отсутствуют линии, соответствующие излучению атомов углерода. Это подтверждает концепцию сборки молекул фуллерена через кластер C₂.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ:

1. Kratschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Solid C₆₀: a new form of carbon // Nature. -1990. - V. 347. - P. 354-358.

2. Howard J.B., McKinnon J.T., Makarovsky Y., Lafleur A.L., Johnson M.E. Fullerenes C_{60} and C_{70} in flames // Nature. – 1991. – V. 352. – P. 139-141.

3. Тарасов Б.П., Мурадян В.Е., Шульга Ю.М., Куюнков Н.С., Мартыненко В.М., Румынская З.А., Ефимов О.Н. Исследование продуктов электродугового испарения металл-графитовых электродов // ISJAEE. – 2002. – № 6. – С. 4-11.

4. Золотухин И.В., Калинин Ю.Е., Стогней О.В. Новые направления физического материаловедения: Учебное пособие. – Воронеж: Издательство Воронежского государственного университета, 2000. – 360 с.

5. Чурилов Г. Н. Плазменный синтез фуллеренов // ПТЭ. – 2000. – № 1. – С. 5-15.

6. Churilov G.N. Synthesis of fullerenes and other nanomaterials in arc discharge // Fullerenes, Nanotubes and Carbon Nanostructures. – 2008. – V. 16. – P. 395-403.

7. Арамян А.Р., Галечян Г.А. Особенности генерации звуковых волн в газовом разряде // ЖТФ. – 1997. – Т. 67. – № 8. – С. 53-56.

8. Афанасьев Д., Блинов И., Богданов А., Дюжев Г., Каратаев В., Кругликов А. Образование фуллеренов в дуговом разряде // ЖТФ. – 1994. – Т. 64. – № 10. – С. 76-90.

9. Оптическая пирометрия плазмы. Под редакцией Соболева Н.Н. – М: Издательство иностранной литературы, 1960. – 439 с.

10. Richter H., Labrocca A.J., Grieco W.J., Taghizadeh K., Lafleur A.L., Howard J.B. Generation of high fullerenes in flames // J. Phys. Chem. B. – 1997. – V. 101. – P. 1556-1560.

11. Харрис П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. – М: Техносфера. 2003. – 336 с.

12. DiLeo R.A., Landi B.J., Raffaelle R.P. Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy // J. Appl. Phys. – 2007. – V. 101. – P. 064307.

13. Yoshikawa M., Mori Y., Maegawa M., Katagiri G., Ishida H., Ishitani A. Raman scattering from diamond particles // Appl. Phys. Lett. – 1993. – V. 62. – № 24. – P. 3114-1116.

14. Biasi R.S., Fernandes A.A.R. Ferromagnetic resonance evidence for superparamagnetism in a partially crystallized metallic glass // J. Phys. Rev. B. – 1990. – V. 42. – N_{2} 1. – P. 527-529.

МАТЕРИАЛЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В РАБОТАХ:

1. Осипова И.В., Внукова Н.Г., Глущенко Г.А., Крылов А.С., Томашевич Е.В., Жарков С.М., Чурилов Г.Н. Никельсодержащие углеродные нанотрубки и наночастицы, полученные в плазме высокочастотной дуги // ФТТ. – 2009. – Т. 51. – № 9. – С. 1857-1859.

2. Bulina N.V., Lopatin V.A., Vnukova N.G., Osipova I.V., Churilov G.N. Arc synthesis of silicon-doped heterofullerenes in plasma at atmospheric pressure // Fullerene, Nanotubes, and Carbon Nanostructures. – 2007. – V. 15. – P. 395-400.

3. Булина Н.В., Петраковская Э.А., Марачевский А.В., Литяева И.С., Осипова И.В., Глущенко Г.А., Кретчмер В., Чурилов Г.Н. Синтез и исследование железофуллереновых кластеров // ФТТ. – 2006. – Т. 48. – № 5. – С. 952-954.

4. Осипова И.В., Внукова Н.Г., Чурилов Г.Н. Спектральные характеристики дугового разряда килогерцового диапазона в потоке аргона атмосферного давления // ЖТФ. – 2007. – Т. 77. – № 4. – С. 128-130.

5. Осипова И.В., Рябков И.А., Внукова Н.Г., Булина Н.В., Чурилов Г.Н. Двухструйный плазмотрон для медицинских применений // ЖПС. – 2007. – Т. 74. – № 1. – С. 139-140. 6. Osipova I.V., Lopatin V.A., Vnukova N.G., Novikov P.V., Churilov G.N. Emission spectroscopy as the main control method for carbon nanoparticles synthesis // Abstracts of 9th Biennial International Workshop "Fullerenes and atomic clusters". – St. Petersburg, 2009. – P. 177.

7. Osipova I.V. Recording of nitrogen-contained carbon-helium plasma parameters by emission spectroscopy method and investigation of obtained nanosized substances // Abstracts of One day conference / School for young scientists "Diagnostics of carbon nanostructures". – St. Petersburg, 2009. – P. 22.

8. Churilov G.N., Osipova I.V., Marchenko S.A., Gulyaeva U.E. Influence of sonic and magnetic fields on fullerene and nanotube formation in carbon-helium plasma of high frequency at atmospheric pressure // Abstracts of 9th Biennial International Workshop "Fullerenes and atomic clusters". – St. Petersburg, 2009. – P. 114.

9. Osipova I.V., Churilov G.N., Novikov P.V. Influence of plasma parameters on formation rate of fullerenes, nanotubes and nanoparticles // Proceedings of XI International Conference "Hydrogen materials science and chemistry of carbon nanomaterials". – Yalta, 2009. – P. 368-371.

10. Чурилов Г.Н., Осипова И.В., Внукова Н.Г., Осадчая С.В., Марченко С.А., Томашевич Е.В., Птераковская Э.А., Жарков С.М., Зеер Г.М., Крылов А.С., Бондаренко Г.В. Синтез и свойства наночастиц со структурой ядро-оболочка на основе никеля и углерода // Труды XII Международной конференции "Электромеханика, электротехнологии, электротехнические материалы и компоненты". – Алушта, 2008. – С. 105.

11. Osipova I.V., Marchenko S.A., Vnukova N.G., Glushenko G.A., Churilov G.N. Sound field influence on fullerene yield // Proceedings of X International conference "Hydrogen materials science and chemistry of carbon nanomaterials". – Sudak, 2007. – P. 398-399.

12.Osipova I.V., Ryakhov V.F. Method of controllable inertialess thermo-vacuum growth of fullerene films // Abstracts of 8th Biennial international workshop "Fullerenes and atomic clusters". – St. Petersburg, 2007. – P. 286.

13.Churilov G.N., Martines Yu.S., Marchenko S.A., Lopatin V.A., Osipova I.V., Vnukova N.G., Bulina N.V. Synthesis of fullerenes and nanosized metal powders by arc discharge in inert gas at atmospheric pressure // Contributed papers of V International conference "Plasma physics and plasma technology". – Minsk, 2006. – P. 645-648.

14. Чурилов Г.Н., Мартинес Ю.С., Осипова И.В., Селютин Г.Е., Дрокин Н.А., Лопатин В.А., Внукова Н.Г., Булина Н.В. Фуллерены и наноразмерные порошки – плазменный синтез, исследования и возможности применения // Труды Всероссийской научно-технической конференции с международным участием "Ультрадисперсные порошки, наноструктуры, материалы: получение, свойства, применение. IV Ставеровские чтения". – Красноярск, 2006. – С. 91-99.

15. Булина Н.В., Мартинез С.Ю., Петраковская Э.А., Бержанский В.Н., Осипова И.В., Чурилов Г.Н. Плазменный синтез нанодисперсных магнитных порошков 3-d металлов, стабилизированных углеродом, и их свойства // Труды XI Международной конференции "Электромеханика, электротехнологии, электротехнические материалы и компоненты". – Алушта, 2006. – С. 141-142.

Осипова Ирина Владимировна

ПОЛУЧЕНИЕ И СВОЙСТВА НАНОДИСПЕРСНЫХ ФОРМ УГЛЕРОДА В ПЛАЗМЕ ВЧ ДУГИ С НЧ МОДУЛЯЦИЕЙ

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

> Подписано в печать 08.09.2009 Формат 60х84/16. Усл. печ. л. 1. Тираж 100 Заказ № 41 Отпечатано в типографии Института физики СО РАН 660036, Красноярск, Академгородок, ИФ СО РАН